Skip to main content

Advertisement

Log in

Animal Models of Autism Spectrum Disorders and Behavioral Techniques of their Examination

  • Published:
Neurophysiology Aims and scope

Autism spectrum disorders constitute a significant problem in modern neurology and in neuroscience in general. At present, the incidence of such disorders is increasing, reasons for their appearance remain practically unclear, and there are no sufficiently effective treatments of these pathologies. A few animal models of autistic disorders have been developed; these models reproduce one or a few key symptoms of autism (cognitive rigidity, violations of social interactions, and qualitative disorders of communication). The respective simulations are carried out using either techniques of genetic engineering (knockout rats and mice) or early (pre- or postnatal) influences of certain environmental factors. To investigate behavioral deviations in the model animals, behavioral testing methods are used. A part of them are “classic” (e.g., the open field test, Morris water maze, T-like maze, radial maze, and Skinner’s chamber), while others have been designed specifically for models of autism. This review describes and analyzes the main methodical approaches in modeling of autism spectrum disorders in animals, and behavioral methods used in the studies of these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Autism Spectrum Disorder Fact Sheet. American Psychiatric Publishing, рр. 1-2 (2013).

  2. S. J. Blumberg, M. D. Bramlett, M. D. Kogan, et al., “Changes in prevalence of parent-reported Autism Spectrum Disorder in school-aged U.S. children: 2007 to 2011–2012,” Nat. Health Stat. Rep., 65 , 1-11 (2013).

    Google Scholar 

  3. C. J. Newschaffer, L. A. Croen, J. Daniels, et al., “The epidemiology of autism spectrum disorders”, Annu. Rev. Public Health, 28, 235–258 (2007).

    Article  PubMed  Google Scholar 

  4. J. Piven and P. Palmer, “Psychiatric disorder and the broad autism phenotype: evidence from a family study of multiple-incidence autism families,” Am. J. Psych., 156, No. 4, 557-563 (1999).

    CAS  Google Scholar 

  5. N. Micali, S. Chakrabarti, and E. Fombonne, “The broad autism phenotype findings from an epidemiological survey,” Autism, 8, No. 1, 21-37 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed, American Psychiatric Association, Washington, DC (1994).

    Google Scholar 

  7. B. S. Abrahams and D. H. Geschwind, “Advances in autism genetics: on the threshold of a new neurobiology,” Nat. Rev. Genet., 9, No. 5, 341–355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. T. L. Arndt, C. J. Stodgell, and P. M. Rodier, “The teratology of autism,” Int. J. Dev. Neurosci., 23, No. 2–3, 189–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. J. F. Shelton, I. Hertz-Picciotto, and I. N. Pessah, “Tipping the balance of autism risk: Potential mechanisms linking pesticides and autism,” Environ. Health Perspect., 120, No. 7, 944-951 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. T. Bourgeron, S. Jamain, and S. Granon, “Animal models of autism. Transgenic and knockout models of neuropsychiatric disorders,” Contemp. Clin. Neurosci., 151-174 (2006).

  11. S. E. Folstein and B. Rosen-Sheidley, “Genetics of autism: complex aetiology for a heterogeneous disorder,” Nat. Rev. Genet., 2, 943–955 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. M. Rutter, “Incidence of autism spectrum disorders: changes over time and their meaning,” Acta Paediatr., 94, No. 1, 2–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. C. Belzung, S. Leman, P. Vourc’h, and C. Andres, “Rodent models for autism: A critical review,” Drug Discov. Today: Dis. Models, 2, No. 2, 93-101 (2005).

    CAS  Google Scholar 

  14. T. B. Van Wimersma Greidanus, “Disturbed behavior and memory of the Brattleboro rat,” Ann. N.Y. Acad. Sci., 394, 655-662 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. R. L. Pobbe, B. L. Pearson, and E. B. Defensor, “Oxytocin receptor knockout mice display deficits in the expression of autism-related behaviors,” Horm. Behav., 61, No. 3, 436-444 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. M. Wцhr, A. Moles, R. K. Schwarting, and F. R. D’Amato, “Lack of social exploratory activation in male μ-opioid receptor KO mice in response to playback of female ultrasonic vocalizations,” Soc. Neurosci., 6, No. 1, 76-87 (2011).

    Article  Google Scholar 

  17. M. Narita, A. Oyabu, Y. Imura, et al., “Nonexploratory movement and behavioral alterations in a thalidomide or valproic acid-induced autism model rat,” Neurosci. Res., 66, No. 1, 2–6 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. D. Kahne, A. Tudorica, A. Borella, et al., “Behavioral and magnetic resonance spectroscopic studies in the rat hyperserotonemic model of autism,” Physiol. Behav., 75, No. 3, 403-410 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. I. Lucki, “The spectrum of behaviors influenced by serotonin,” Biol. Psychiatry, 44, No. 3, 151-62 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. P. T. Tsai, C. Hull, Y. X. Chu, et al., “Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice,” Nature, 488, 647–651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. A. Mines, C. J. Yuskaitis, M. K. King, et al., “GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile X syndrome and autism,” PLoS ONE, 5, No. 3, e9706 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. K. M. Huber, S. M. Gallagher, S. T. Warren, and M. F. Bear, “Altered synaptic plasticity in a mouse model of fragile X mental retardation,” Proc. Natl. Acad. Sci. USA, 99, No. 11, 7746–7750 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. N. J. Minshew, B. Luna, and J. A. Sweeney, “Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autism,” Neurology, 52, No. 5, 917–922 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. T. H. Wassink, J. Piven, V. J. Vieland, et al., “Examination of AVPR1a as an autism susceptibility gene,” Mol. Psychiatry, 9, 968–972 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. M. D. Bauman, J. E. Toscano, B. A. Babineau, et al., “Emergence of stereotypies in juvenile monkeys (Macaca mulatta) with neonatal amygdala or hippocampus lesions,” Behav. Neurosci., 122, No. 5, 1005-1015 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. L. Malkova, M. Mishkin, S. J. Suomi, and J. Bachevalier, “Long-term effects of neonatal medial temporal ablations on socioemotional behavior in monkeys (Macaca mulatta),” Behav. Neurosci., 124, No. 6, 742-760 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. S. C. Panaitof, “A songbird animal model for dissecting the genetic bases of autism spectrum disorder,” Dis. Markers, 33, No. 5, 241–249 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. J. F. Cryan and A. Holmes, “The ascent of mouse: advances in modelling human depression and anxiety,” Nat Rev Drug Discov., 4, No. 9, 775-790 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. E. Grant and J. Macintosh, “A comparison of the social postures of some common laboratory rodents,” Behaviour, 21, 246–259 (1963).

    Article  Google Scholar 

  30. C. S. Carter, J. R. Williams, D. M. Witt, and T. R. Insel, “Oxytocin and social bonding,” Ann. N.Y. Acad. Sci., 652, 204–211 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. M. L. Terranova and G. Laviola, “Scoring of Social Interactions and Play in Mice During Adolescence,” Curr. Protoc. Toxicol., 13, No. 10 (2005).

  32. H. G. McFarlane, G. K. Kusek, M. Yang, et al., “Autism-like behavioral phenotypes in BTBR T+tf/J mice,” Genes Brain Behav., 7, No. 2, 152-163 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. M. A. Hofer and H. N. Shair, “Ultrasonic vocalization, laryngeal braking, and thermogenesis in rat pups: a reappraisal,” Behav. Neurosci., 107, 354–362 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. K. A. Miczek, S. C. Maxson, E. W. Fish, S. Faccidomo, “Aggressive behavioral phenotypes in mice,” Behav. Brain Res., 125, 167–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. J. T. Winslow, E. F. Hearn, J. Ferguson, et al., “Infant vocalization, adult aggression, and fear behavior of an oxytocin null mutant mouse,” Horm. Behav., 37, 145–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. C. C. Wrenn, A. P. Harris, M. C. Saavedra, and J. N. Crawley, “Social transmission of food preference in mice: methodology and application to galanin-overexpressing transgenic mice,” Behav. Neurosci., 117, 21–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. D. W. Wesson, M. Keller, Q. Douhard, et al., “Enhanced urinary odor discrimination in female aromatase knockout (ArKO) mice,” Horm. Behav., 49, 580–586 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. J. B. Panksepp, K. A. Jochman, J. U. Kim, et al., “Affiliative behavior, ultrasonic communication and social reward are influenced by genetic variation in adolescent mice,” PLoS One, 2, e351 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  39. S. R. Wersinger, H. K. Caldwell, L. Martinez, et al., “Vasopressin 1a receptor knockout mice have a subtle olfactory deficit but normal aggression,” Genes Brain Behav., 6, 540–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. J. Brielmaier, P. G. Matteson, J. L. Silverman et al., “Autism-Relevant Social Abnormalities and Cognitive Deficits in Engrailed-2 Knockout Mice,” PLoS ONE, 7, No. 7, e40914 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S. S. Moy, J. J. Nadler, and N. B. Young, “Mouse Behavioral Tasks Relevant to Autism: Phenotypes of Ten Inbred Strains,” Behav. Brain Res., 176, No. 1, 4–20 (2007).

    Article  PubMed  Google Scholar 

  42. J. L. Silverman, S. M. Turner, C. L. Barkan, et al., “Sociability and motor functions in Shank1 mutant mice,” Brain Res., 1380, 120-137 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. M. Alarcуn, B. S. Abrahams, J. L. Stone, et al., “Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene,” Am. J. Hum. Genet., 82, No. 1, 150-159 (2008).

    Article  Google Scholar 

  44. H. C. Whalley, G. O’Connell, J. E. Sussmann, et al., “Genetic variation in CNTNAP2 alters brain function during linguistic processing in healthy individuals,” Am. J. Med. Genet. B. Neuropsychiatr. Genet., 156, No. 8, 941-948 (2011).

    Article  CAS  Google Scholar 

  45. T. M. DeLorey, P. Sahbaie, E. Hashemi, et al., “Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder,” Behav. Brain. Res., 187, 207–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. B. C. Ryan, N. B. Young, S. S. Moy, and J. N. Crawley, “Olfactory cues are sufficient to elicit social approach behaviors but not social transmission of food preference in C57BL/6J mice,” Behav. Brain Res., 193, 235–242 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. K. Radyushkin, K. Hammerschmidt, S. Boretius, et al., “Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit,” Genes Brain Behav., 8, 416–425 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. E. Callaway, “Rat models on the rise in autism research,” Nature News, 23 November (2011).

  49. E. C. Azmitia, A. V. Shemer, and P. M. Whitaker-Azmitia, “Dose-related effects of prenatal 5-methoxytryptamine (5-MT) on development of serotonin terminal density and behavior,” Dev. Brain Res., 59, No. 1, 59-63 (1991).

    Article  Google Scholar 

  50. A. G. Foley, S. Gannon, N. Rombach-Mullan, et al., “Class I histone deacetylase inhibition ameliorates social cognition and cell adhesion molecule plasticity deficits in a rodent model of autism spectrum disorder,” Neuropharmacology, 63, 750-760 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. J. Caston, E. Yon, D. Mellier, et al., “An animal model of autism: behavioural studies in the GS guinea-pig,” Eur. J. Neurosci., 10, No. 8, 2677-2684 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. M. V. Pletnikov, T. H. Moran, and K. M. Carbone, “Borna disease virus infection of the neonatal rat: developmental brain injury model of autism spectrum disorders,” Front Biosci., 7, 593-607 (2002).

    Google Scholar 

  53. J. N. Crawley, What’s Wrong with My Mouse? Behavioral Phenotyping of Transgenic and Knockout Mice, John Wiley and Sons, 329 pp. (2000).

  54. M. Yang, J. L. Silverman, and J. N. Crawley, “Automated three-chambered social approach task for mice,” in: Curr. Protoc. Neurosci., Chapter 8: Unit 8. 26 (2011).

  55. J. J. Nadler, S. S. Moy, G. Dold, et al., “Automated apparatus for quantitation of social approach behaviors in mice,” Genes Brain Behav., 3, No. 5, 303-14 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. J. Veenstra-Van der Weele, C. L. Muller, H. Iwamoto, et al., “Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior,” Proc. Natl. Acad. Sci. USA, 109, 5469–5474 (2012).

    Article  CAS  Google Scholar 

  57. J. Bakker, S. Honda, N. Harada, and J. Balthazart,“Sexual partner preference requires a functional aromatase (cyp19) gene in male mice,” Horm. Behav., 42, 158–171 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. T. H. Ahern, M. E. Modi, J. P. Burkett, and L. J. Young, “Evaluation of two automated metrics for analyzing partner preference tests,” J. Neurosci. Methods, 182, 180–188 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. S. Jamain, K. Radyushkin, K. Hammerschmidt, et al., “Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism,” Proc. Natl. Acad. Sci. USA, 105, 1710–1715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. M. L. Scattoni, L. Ricceri, and J. N. Crawley, “Unusual repertoire of vocalizations in adult BTBR T + tf/J mice during three types of social encounters,” Genes Brain Behav., 10, 44–56 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. O. Peсagarikano, B. S. Abrahams, E. I. Herman, et al., “Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits,” Cell, 147, No. 1, 235-246 (2011).

    Article  Google Scholar 

  62. J. L. Silverman, S. S. Tolu, C. L. Barkan, and J. N. Crawley, “Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP,” Neuropsychopharmacology, 35, No. 4, 976-989 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. A. Thomas, A. Burant, N. Bui, et al., “Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety,” Psychopharmacology (Berlin), 204, No. 2, 361-373 (2009).

    Article  CAS  Google Scholar 

  64. J. P. J. Pinel and D. Treit, “Burying as a defensive response in rats,” J. Comp. Physiol. Psychol., 92, No. 4, 708–712 (1978).

    Article  Google Scholar 

  65. C. L. Broekkamp, H. W. Rijk, D. Joly-Gelouin, and K. L. Lloyd, “Major tranquillizers can be distinguished from minor tranquillizers on the basis of effects on marble burying and swim-induced grooming in mice,” Eur. J. Pharmacol., 126, No. 3, 223-229 (1986).

    Article  CAS  PubMed  Google Scholar 

  66. K. Njung’e and S. L. Handley, “Evaluation of marbleburying behavior as a model of anxiety,” Pharmacol. Biochem. Behav., 38, No. 1, 63-67 (1991).

    Article  PubMed  Google Scholar 

  67. M. Wöhr and M. L. Scattoni, “Behavioural methods used in rodent models of autism spectrum disorders: Current standards and new developments,” Behav. Brain Res., 251, 5– 17 (2013).

    Article  PubMed  Google Scholar 

  68. C. Belzung, “Measuring rodent exploratory behavior,” in: Handbook of Molecular Genetic Techniques for Brain and Behavior Research, W. E. Crusio, and R. Gerlai (eds. ), Elsevier, Amsterdam (2001), pp. 739–749.

    Google Scholar 

  69. H. M. Zippelius and W. M. Schleidt, “Ultraschall-Laute bei jungen Mäusen,” Naturwissenschaften, 43, 502 (1956).

    Article  Google Scholar 

  70. G. D. Sewell, “Ultrasonic communication in rodents,” Nature, 227, 410 (1970).

    Article  CAS  PubMed  Google Scholar 

  71. M. Wöhr, F. I. Roullet, A. Y. Hung, et al., “Communication impairments in mice lacking Shank1: Reduced levels of ultrasonic vocalizations and scent marking behavior,” PLoS ONE, 6, No. 6, e20631 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  72. M. Wöhr, F. I. Roullet, and J. N. Crawley, “Reduced scent marking and ultrasonic vocalizations in the BTBR T+tf/J mouse model of autism,” Genes Brain Behav., 10, No. 1, 35-43 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. C. S. Lai, D. Gerrelli, A. P. Monaco, and S. E. Fisher, “Copp AJ. FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder,” Brain, 126, No. 11, 2455-2462 (2003).

    Article  PubMed  Google Scholar 

  74. T. E. Holy and Z. Guo, “Ultrasonic songs of male mice,” PLoS Biol., 3, No. 12, e386 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  75. G. Arriaga, E. P. Zhou, E. D. Jarvis, “Of Mice, Birds, and Men: The Mouse Ultrasonic Song System Has Some Features Similar to Humans and Song-Learning Birds,” PLoS ONE , 7, No. 10, e46610 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. M. C. Condro, S. A. White, “Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning,” J. Compar. Neurol., 522, 169 (2014).

    Article  CAS  Google Scholar 

  77. S. Haesler, C. Rochefort, B. Georgi, et al., “Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X,” PLoS Biol, 5, e321 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. T. Salyha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hrabovska, S.V., Salyha, Y.T. Animal Models of Autism Spectrum Disorders and Behavioral Techniques of their Examination. Neurophysiology 48, 380–388 (2016). https://doi.org/10.1007/s11062-017-9613-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-017-9613-2

Keywords

Navigation