Skip to main content
Log in

Annealing of magnetic nanoparticles for their encapsulation into microcarriers guided by vascular magnetic resonance navigation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Iron, cobalt and iron–cobalt nanoparticle properties, such as diameter, saturation magnetization (Ms), crystal structure, surface composition and stability in physiological solutions, were investigated according to the annealing temperature used prior to their encapsulation into poly(d, l-lactic-co-glycolic acid) (PLGA) microcarriers. These new 60-μm microparticles should exhibit an Ms around 70 emu g−1 to be guided in real time from their intravascular injection site to a tumor with a magnetic resonance imaging scanner. The challenge in the preparation of the nanoparticles consisted in limiting Ms loss by oxidation and the release of metallic ions. It was found that when the annealing temperature reached 650 °C, Fe nanoparticles coalesced, the mean diameter reached (Ø) 361 ± 138 nm and Ms increased to 171 emu g−1. These nanoparticles exhibited a core of α-Fe and a shell of Fe3O4. On the opposite, Co nanoparticle properties were not affected by the annealing temperature: Ø and Ms were around 120 nm and 140 emu g−1, respectively. FeCo (60:40, atomic percent) nanoparticles coalesced at an annealing temperature >550 °C, Ø and Ms reached 217 nm and 213 emu g−1, respectively. Co and FeCo nanoparticles with a Co atomic proportion >15 % were coated with a graphite shell when the temperature was set to 550 °C. In physiological solution, Fe and Co nanoparticles significantly released more ions than FeCo nanoparticles. After the preparation steps prior to their encapsulation, the Ms of Fe and FeCo nanoparticles decreased by 25 and 3 %, respectively. FeCo–PLGA microparticles possessed a relatively high Ms (73 emu g−1) while that of Fe–PLGA microparticle (20 emu g−1) was too low for efficient targeting. The graphite shell was efficient to preserve Ms during the encapsulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alloyeau D, Langlois C, Ricolleau C, Bouar YL, Loiseau A (2007) A TEM in situ experiment as a guideline for the synthesis of as-grown ordered CoPt nanoparticles. Nanotechnology 18:375301. doi:10.1088/0957-4484/18/37/375301

    Article  Google Scholar 

  • Alloyeau D, Ricolleau C, Mottet C, Oikawa T, Langlois C, Le Bouar Y, Braidy N, Loiseau A (2009) Size and shape effects on the order-disorder phase transition in CoPt nanoparticles. Nat Mater 8:940–946. doi:10.1038/nmat2574

    Article  CAS  Google Scholar 

  • Amirfazli A (2007) Nanomedicine: magnetic nanoparticles hit the target. Nat Nanotechnol 2:467–468. doi:10.1038/nnano.2007.234

    Article  CAS  Google Scholar 

  • Bai J, Wang J-P (2005) High-magnetic-moment core-shell-type FeCo-Au/Ag nanoparticles. Appl Phys Lett 87:152502. doi:10.1063/1.2089171

    Article  Google Scholar 

  • Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans WH, Surprenant A, Lopez-Castejon G, Mann S, Davis SA, Hails LA, Ingham E, Verkade P, Lane J, Heesom K, Newson R, Case CP (2009) Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotechnol 4:876–883. doi:10.1038/nnano.2009.313

    Article  CAS  Google Scholar 

  • Chaubey GS, Barcena C, Poudyal N, Rong C, Gao J, Sun S, Liu JP (2007) Synthesis and stabilization of FeCo nanoparticles. J Am Chem Soc 129:7214–7215. doi:10.1021/ja0708969

    Article  CAS  Google Scholar 

  • Chen L-B, Zhang F, Wang C–C (2009) Rational synthesis of magnetic thermosensitive microcontainers as targeting drug carriers. Small 5:621–628. doi:10.1002/smll.200801154

    Article  CAS  Google Scholar 

  • Dames P, Gleich B, Flemmer A, Hajek K, Seidl N, Wiekhorst F, Eberbeck D, Bittmann I, Bergemann C, Weyh T, Trahms L, Rosenecker J, Rudolph C (2007) Targeted delivery of magnetic aerosol droplets to the lung. Nat Nanotechnol 2:495–499. doi:10.1038/nnano.2007.217

    Article  Google Scholar 

  • Desvaux C, Amiens C, Fejes P, Renaud P, Respaud M, Lecante P, Snoeck E, Chaudret B (2005) Multimillimetre-large superlattices of air-stable iron–cobalt nanoparticles. Nat Mater 4:750–753. doi:10.1038/nmat1480

    Article  CAS  Google Scholar 

  • Desvaux C, Lecante P, Respaud M, Chaudret B (2010) Structural and magnetic study of the annealing of Fe-Co nanoparticles. J Mater Chem 20:103–109. doi:10.1039/B916294A

    Article  CAS  Google Scholar 

  • Fernandez-Pacheco R, Arruebo M, Marquina C, Ibarra R, Arbiol J, Santamaria J (2006) Highly magnetic silica-coated iron nanoparticles prepared by the arc-discharge method. Nanotechnology 17:1188–1192. doi:10.1088/0957-4484/17/5/004

    Article  CAS  Google Scholar 

  • Fortin-Ripoche JP, Martina MS, Gazeau F, Menager C, Wilhelm C, Bacri JC, Lesieur S, Clement O (2006) Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility. Radiology 239:415–424. doi:10.1148/radiol.2392042110

    Article  Google Scholar 

  • Hahn A, Fuhlrott J, Loos A, Barcikowski S (2012) Cytotoxicity and ion release of alloy nanoparticles. J Nanopart Res 14:1–10. doi:10.1007/s11051-011-0686-3

    Article  Google Scholar 

  • Han YC, Heo JK, Kim YH, Kang YS (2007) Heating temperature effect on the magnetic property of a-fe nanoparticle. Mol Cryst Liq Cryst 472:69–75. doi:10.1080/15421400701545114

    Article  CAS  Google Scholar 

  • Huang S-H, Juang R-S (2011) Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review. J Nanopart Res 13:4411–4430. doi:10.1007/s11051-011-0551-4

    Article  Google Scholar 

  • Ingham B, Lim TH, Dotzler CJ, Henning A, Toney MF, Tilley RD (2011) How nanoparticles coalesce: an in situ study of Au nanoparticle aggregation and grain growth. Chem Mater 23:3312–3317. doi:10.1021/cm200354d

    Article  CAS  Google Scholar 

  • Ishida K, Nishizawa T (1991) The C–Co(Carbon–Cobalt) system. J Phase Equilib 12:417–424. doi:10.1007/bf02645959

    Article  CAS  Google Scholar 

  • Jeong Hoon B, Jae Hong P, Ki Young Y, Jungho H (2009) Ambient spark generation to synthesize carbon-encapsulated metal nanoparticles in continuous aerosol manner. Nanoscale 1:339–343. doi:10.1039/B9NR00058E

    Article  Google Scholar 

  • Jiao J, Seraphin S, Wang X, Withers JC (1996) Preparation and properties of ferromagnetic carbon-coated Fe, Co., and Ni nanoparticles. J Appl Phys 80:103–108. doi:10.1063/1.362765

    Article  CAS  Google Scholar 

  • Lagunas A, Jimeno C, Font D, Solà L, Pericàs MA (2006) Mechanistic studies on the conversion of dicobalt octacarbonyl into colloidal cobalt nanoparticles. Langmuir 22:3823–3829. doi:10.1021/la053016h

    Article  CAS  Google Scholar 

  • Lee JH, Sherlock SP, Terashima M, Kosuge H, Suzuki Y, Goodwin A, Robinson J, Seo WS, Liu Z, Luong R, McConnell MV, Nishimura DG, Dai H (2009) High-contrast in vivo visualization of microvessels using novel FeCo/GC magnetic nanocrystals. Magn Reson Med 62:1497–1509. doi:10.1002/mrm.22132

    Article  Google Scholar 

  • Liapi E, Geschwind JF (2007) Transcatheter and ablative therapeutic approaches for solid malignancies. J Clin Oncol 25:978–986. doi:10.1200/JCO.2006.09.8657

    Article  Google Scholar 

  • Liu X, Kaminski MD, Chen H, Torno M, Taylor L, Rosengart AJ (2007) Synthesis and characterization of highly-magnetic biodegradable poly(d, l-lactide-co-glycolide) nanospheres. J Control Release 119:52–58. doi:10.1016/j.jconrel.2006.11.031

    Article  CAS  Google Scholar 

  • Lu A-H, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Edit 46:1222–1244. doi:10.1002/anie.200602866

    Article  CAS  Google Scholar 

  • Lubbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW, Huhn D (1996) Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res 56:4694–4701

    CAS  Google Scholar 

  • Martel S, Mathieu JB, Felfoul O, Chanu A, Aboussouan E, Tamaz S, Pouponneau P, Yahia L, Beaudoin G, Soulez G, Mankiewicz M (2007) Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett 90:114101–114105

    Article  Google Scholar 

  • Midander K, Cronholm P, Karlsson HL, Elihn K, Moller L, Leygraf C, Wallinder IO (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small 5:389–399. doi:10.1002/smll.200801220

    Article  CAS  Google Scholar 

  • Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) The role of interparticle and external forces in nanoparticle assembly. Nat Mater 7:527–538. doi:10.1038/nmat2206

    Article  CAS  Google Scholar 

  • Mizuno M, Sasaki Y, Yu ACC, Inoue M (2004) Prevention of nanoparticle coalescence under high-temperature annealing. Langmuir 20:11305–11307. doi:10.1021/la0481694

    Article  CAS  Google Scholar 

  • Palasantzas G (2006) Coalescence aspects of cobalt nanoparticles during in situ high-temperature annealing. J Appl Phys 99:024307. doi:10.1063/1.2163983

    Article  Google Scholar 

  • Plank C (2009) Nanomedicine: silence the target. Nat Nanotechnol 4:544–545. doi:10.1038/nnano.2009.251

    Article  CAS  Google Scholar 

  • Pouponneau P, Leroux JC, Martel S (2009) Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization. Biomaterials 30:6327–6332. doi:10.1016/j.biomaterials.2009.08.005

    Article  CAS  Google Scholar 

  • Pouponneau P, Savadogo O, Napporn T, Yahia L, Martel S (2010) Corrosion study of iron–cobalt alloys for MRI-based propulsion embedded in untethered microdevices operating in the vascular network. J Biomed Mater Res B 93:203–211. doi:10.1002/jbm.b.31575

    Google Scholar 

  • Pouponneau P, Leroux JC, Soulez G, Gaboury L, Martel S (2011a) Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials 32:3481–3486. doi:10.1016/j.biomaterials.2010.12.059

    Article  CAS  Google Scholar 

  • Pouponneau P, Savadogo O, Napporn T, Yahia L, Martel S (2011b) Corrosion study of single crystal Ni–Mn–Ga alloy and Tb0.27Dy0.73Fe1.95 alloy for the design of new medical microdevices. J Mater Sci Mater Med 22:237–245. doi:10.1007/s10856-010-4206-2

    Article  CAS  Google Scholar 

  • Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117. doi:10.1126/science.1058495

    Article  CAS  Google Scholar 

  • Qiang Y, Antony J, Sharma A, Nutting J, Sikes D, Meyer D (2006) Iron/iron oxide core-shell nanoclusters for biomedical applications. J Nanopart Res 8:489–496. doi:10.1007/s11051-005-9011-3

    Article  CAS  Google Scholar 

  • Reiss G, Hutten A (2005) Magnetic nanoparticles: applications beyond data storage. Nat Mater 4:725–726. doi:10.1038/nmat1494

    Article  CAS  Google Scholar 

  • Samia ACS, Hyzer K, Schlueter JA, Qin C-J, Jiang JS, Bader SD, Lin X-M (2005) Ligand effect on the growth and the digestion of Co nanocrystals. J Am Chem Soc 127:4126–4127. doi:10.1021/ja044419r

    Article  CAS  Google Scholar 

  • Schallibaum J, Dalla Torre FH, Caseri WR, Loffler JF (2009) Large-scale synthesis of defined cobalt nanoparticles and magnetic metal-polymer composites. Nanoscale 1:374–381. doi:10.1039/B9NR00230H

    Article  CAS  Google Scholar 

  • Seo WS, Lee JH, Sun X, Suzuki Y, Mann D, Liu Z, Terashima M, Yang PC, McConnell MV, Nishimura DG, Dai H (2006) FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater 5:971–976. doi:10.1038/nmat1775

    Article  CAS  Google Scholar 

  • Seraphin S, Zhou D, Jiao J (1996) Filling the carbon nanocages. J Appl Phys 80:2097–2104. doi:10.1063/1.363102

    Article  CAS  Google Scholar 

  • Sergiienko R, Kim S, Shibata E, Nakamura T (2010) Structure of Fe–Pt alloy included carbon nanocapsules synthesized by an electric plasma discharge in an ultrasonic cavitation field of liquid ethanol. J Nanopart Res 12:481–491. doi:10.1007/s11051-009-9677-z

    Article  CAS  Google Scholar 

  • Smoluchowski R (1942) Diffusion rate of carbon in iron–cobalt alloys. Phys Rev 62:539–544. doi:10.1103/PhysRev.62.539

    Article  CAS  Google Scholar 

  • Soler MA, Lima EC, da Silva SW, Melo TF, Pimenta AC, Sinnecker JP, Azevedo RB, Garg VK, Oliveira AC, Novak MA, Morais PC (2007) Aging investigation of cobalt ferrite nanoparticles in low pH magnetic fluid. Langmuir 23:9611–9617. doi:10.1021/la701358g

    Article  CAS  Google Scholar 

  • Srinivasan B, Yuanpeng L, Ying J, YunHao X, Xiaofeng Y, Chengguo X, Jian-Ping W (2009) A detection system based on giant magnetoresistive sensors and high-moment magnetic nanoparticles demonstrates Zeptomole sensitivity: potential for personalized medicine. Angew Chem Int Edit 48:2764–2767. doi:10.1002/anie.200806266

    Article  CAS  Google Scholar 

  • Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992. doi:10.1126/science.287.5460.1989

    Article  CAS  Google Scholar 

  • Tokoro H, Fujii S, Oku T (2004) Iron nanoparticles coated with graphite nanolayers and carbon nanotubes. Diam Relat Mater 13:1270–1273. doi:10.1016/j.diamond.2003.10.058

    Article  CAS  Google Scholar 

  • Wang ZH, Zhang ZD, Choi CJ, Kim BK (2003) Structure and magnetic properties of Fe(C) and Co(C) nanocapsules prepared by chemical vapor condensation. J Alloy Compd 361:289–293. doi:10.1016/s0925-8388(03)00441-9

    Article  CAS  Google Scholar 

  • Wang C, Peng S, Lacroix L-M, Sun S (2009) Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles. Nano Research 2:380–385. doi:10.1007/s12274-009-9037-4

    Article  CAS  Google Scholar 

  • Wassel RA, Grady B, Kopke RD, Dormer KJ (2007) Dispersion of super paramagnetic iron oxide nanoparticles in poly(d, l-lactide-co-glycolide) microparticles. Colloid Surface A 292:125–130. doi:10.1016/j.colsurfa.2006.06.012

    Article  CAS  Google Scholar 

  • Widder KJ, Morris RM, Poore G, Howard DP Jr, Senyei AE (1981) Tumor remission in Yoshida sarcoma-bearing rats by selective targeting of magnetic albumin microspheres containing doxorubicin. Proc Natl Acad Sci USA 78:579–581

    Article  CAS  Google Scholar 

  • Yamada M, Okumura S-J, Takahashi K (2010) Synthesis and film formation of magnetic feco nanoparticles with graphitic carbon shells. J Phys Chem Lett 1:2042–2045. doi:10.1021/jz100604c

    Article  CAS  Google Scholar 

  • Yiwen C, Peng Z, Jianghua H, Wuli Y, Changchun W (2009) Synthesis of monodispersed Co(Fe)/carbon nanocomposite microspheres with very high saturation magnetization. J Phys Chem C 113:4047–4052. doi:10.1021/jp810395j

    Article  Google Scholar 

  • Zhang D, Wei S, Kaila C, Su X, Wu J, Karki AB, Young DP, Guo Z (2010) Carbon-stabilized iron nanoparticles for environmental remediation. Nanoscale 2:917–919. doi:10.1039/C0NR00065E

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by the Canada Research Chair program, the Canada Foundation for Innovation, the National Sciences and Engineering Research Council of Canada (NSERC), Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT) and the Government of Québec. The author acknowledges Sylvie Marceau and Amira Khoury (Université de Montréal) for the access to AAS and Jean-Philippe Masse (École Polytechnique de Montréal) for his collaboration with TEM and XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Martel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouponneau, P., Segura, V., Savadogo, O. et al. Annealing of magnetic nanoparticles for their encapsulation into microcarriers guided by vascular magnetic resonance navigation. J Nanopart Res 14, 1307 (2012). https://doi.org/10.1007/s11051-012-1307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1307-5

Keywords

Navigation