Skip to main content
Log in

Notch Signaling is Required for Dendritic Cell Maturation and T Cell Expansion in Paracoccidioidomycosis

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The Notch signaling pathway participates in several cellular functional aspects. This signaling has an important role in targeting both DC maturation and DC-mediated T cell responses. Thus, it is essential to investigate the influence of this signaling pathway in the role played by DCs in the pathogenesis of experimental paracoccidioidomycosis. This disease is a granulomatous and systemic mycosis that mainly affects lung tissue and can spread to any other organ and system. In this study, we demonstrated that bone marrow-derived DCs infected with yeasts from Paracoccidioides brasiliensis strain 18 performed efficiently their maturation after the activation of Notch signaling, with an increase in CD80, CD86, CCR7, and CD40 expression and the release of cytokines such as IL-6 and TNF-α. We observed that the inhibition of the γ-secretase DAPT impaired the proliferation of T cells induced by DC stimulation. In conclusion, our data suggest that Notch signaling contributes effectively to the maturation of DCs and the DC-mediated activation of the T cell response in P. brasiliensis infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Londero AT, Ramos CD. Paracoccidioidomicose: estudo clinico-micologico de 260 casos observados no interior do Estado do Rio Grande do Sul. J Pneumol. 1990;16:129–32.

    Google Scholar 

  2. Restrepo A, Tobon AM. Paracoccidioides brasiliensis. In: Mandell GL, Bennett JE, Dolin R, editors. Mandell, Douglas and Bennett’s principles and practice of infectious diseases, vol. 7. New York: Elsevier; 2009. p. 3357–63.

    Google Scholar 

  3. Franco M, Montenegro MR, Mendes RP, Marques SA, Dillon NL, Mota NGS. Paracoccidioidomycosis: a recently proposed classification of its clinical forms. Rev Soc Bras Med Trop. 1987;20:129–32.

    Article  PubMed  CAS  Google Scholar 

  4. Almeida FP. Estudos comparativos do granuloma coccidióidico nos Estados Unidos e no Brasil: Novo gênero para o parasita brasileiro. Fac Med Univ São Paulo. 1930;5:125–41.

    Google Scholar 

  5. Teixeira MM, Theodoro RC, De Carvalho MJ, Fernandes L, Paes HC, Hahn RC, Mendoza L, Bagagli E, San-Blas G, Felipe MS. Phylogenetic analysis reveals a high level of speciation in the Paracoccidioides genus. Mol Phylogenet Evol. 2009;52:273–83.

    Article  PubMed  Google Scholar 

  6. Teixeira MM, Theodoro R, Oliveira FF, Machado GC, Hahn RC, Bagagli E, San-Blas G, Soares Felipe MS. Paracoccidioides lutzii sp. nov.: biological and clinical implications. Med Mycol. 2013;52:19–28.

    Google Scholar 

  7. Matute DR, Mcewen JG, Montes BA, San-Blas G, Bagagli E, Rauscher JT, Restrepo A, Morais F, Nino-Vega G, Taylor JW. Cryptic speciation and recombination in the fungus Paracoccidioides brasiliensis as revealed by gene genealogies. Mol Biol Evol. 2006;23:65–73.

    Article  PubMed  CAS  Google Scholar 

  8. Carrero LL, Niño-Vega G, Teixeira MM, Carvalho MJ, Soares CM, Pereira M, Jesuino RS, McEwen JG, Mendoza L, Taylor JW, Felipe MS, San-Blas G. New Paracoccidioides brasiliensis isolate reveals unexpected genomic variability in this human pathogen. Fungal Genet Biol. 2008;45(5):605–12.

    Article  PubMed  CAS  Google Scholar 

  9. Teixeira MM, Theodoro RC, Nino-Vega G, Bagagli E, Felipe MS. Paracoccidioides species complex: ecology, phylogeny, sexual reproduction, and virulence. PLoS Pathog. 2014;10(10):e1004397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Theodoro RC, Teixeira MDM, Felipe MSS, Paduan KDS, Ribolla PM, San-Blas G. Genus Paracoccidioides: species recognition and biogeographic aspects. PLoS ONE. 2012;7:e37694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Coutinho Silva D, Lazéra M, Petri V, Oliveira RM, Sabroza P, Wanke B. Paracoccidioidomycosis mortality in Brasil (1980–1995). Caderno de Saúde Pública. 2002;18(5):1441–54.

    Article  Google Scholar 

  12. Prado M, Silva MB, Laurenti R, Travassos LR, Taborda CP. Mortality due to systemic mycoses as a primary cause of death or in association with AIDS in Brazil: a review from 1996 to 2006. Mem Inst Oswaldo Cruz. 2009;104(3):513–21.

    Article  PubMed  Google Scholar 

  13. Loose DS, Price-Stover E, Restrepo A, Stevens DA, Feldman D. Estradiol binds to a receptor-like cytosol binding protein and initiates a biological response in Paracoccidioides brasiliensis. Proc Natl Acad USA. 1983;80:7659–63.

    Article  CAS  Google Scholar 

  14. Bocca AL, Amaral AC, Teixeira MM, Sato PK, Sato P, Shikanai-Yasuda MA, Soares FMS. Paracoccidioidomycosis: eco-epidemiology, taxonomy and clinical and therapeutic issues. Future Microbiol. 2013;8:1177–91.

    Article  PubMed  CAS  Google Scholar 

  15. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.

    Article  PubMed  CAS  Google Scholar 

  16. Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol. 2012;30:1–22.

    Article  PubMed  CAS  Google Scholar 

  17. Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z, Zwirner J, Blankenstein T, Henning G, Förster R. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity. 2004;21:279–88.

    Article  PubMed  CAS  Google Scholar 

  18. Tal O, Lim HY, Gurevich I, Milo I, Shipony Z, Ng LG, Angeli V, Shakhar G. DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J Exp Med. 2011;208:2141–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF, Luther SA, Bollenbach T, Sixt M. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science. 2013;339:328–32.

    Article  PubMed  CAS  Google Scholar 

  20. Dos Santos SS, Ferreira KS, Almeida S. Paracoccidioides brasilinsis-induced migration of dendritic cells and subsequent T-cell activation in the lung-draining lymph nodes. PLoS ONE. 2011;6(5):e19690.

    Article  CAS  Google Scholar 

  21. Ferreira KS, Bastos KR, Russo M, Almeida SR. Interaction between Paracoccidioides brasiliensis and pulmonary dendritic cells induces interleukin-10 production and toll-like receptor-2 expression: possible mechanisms of susceptibility. J Infect Dis. 2007;196(7):1108–15.

    Article  PubMed  CAS  Google Scholar 

  22. Pina A, de Araujo EF, Felonato M, Loures FV, Feriotti C, Bernardino S, Barbuto JA, Calich VL. Myeloid dendritic cells (DCs) of mice susceptible to paracoccidioidomycosis suppress T cell responses whereas myeloid and plasmacytoid DCs from resistant mice induce effector and regulatory T cells. Infect Immun. 2013;81:1064–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tavares AH, Derengowski LS, Ferreira KS, Silva SS, Macedo C, Bocca AL, Passos GA, Almeida SR, Silva-Pereira I. Murine dendritic cells transcriptional modulation upon Paracoccidioides brasiliensis infection. PLoS Negl Trop Dis. 2012;6(1):e1459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Cheng P, Gabrilovich D. Notch signaling in differentiation and function of dendritic cells. Immunol Res. 2008;41:1–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Weijzen S, Velders MP, Elmishad AG, Bacon PE, Panella JR, Nickoloff BJ, Miele L, Kast WM. The Notch ligand Jagged-1 is able to induce maturation of monocyte-derived human dendritic cells. J Immunol. 2002;169:4273–8.

    Article  PubMed  CAS  Google Scholar 

  26. Bugeon L, Gardner LM, Rose A, Gentle M, Dallman MJ. Cutting edge: Notch signaling induces a distinct cytokine profile in dendritic cells that supports T cell-mediated regulation and IL-2-dependent IL-17 production. J Immunol. 2008;181:8189–93.

    Article  PubMed  CAS  Google Scholar 

  27. Wang Z, Shufesky WJ, Montecalvo A, Divito SJ, Larregina AT, Morelli AE. In situ-targeting of dendritic cells with donor-derived apoptotic cells restrains indirect allorecognition and ameliorates allograft vasculopathy. PLoS ONE. 2009;4:e4940.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Caton ML, Smith-Raska MR, Reizis B. Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J Exp Med. 2007;204:1653–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yamaguchi E, Chiba S, Kumano K, Kunisato A, Takahashi T, Hirai H. Expression of Notch ligands, Jagged 1, 2 and Delta1 in antigen presenting cells in mice. Immunol Lett. 2002;81:59–64.

    Article  PubMed  CAS  Google Scholar 

  30. Bugeon L, Gardner LM, Rose A, Gentle M, Dallman MJ. Cutting edge: Notch signaling induces a distinct cytokine profile in dendritic cells that supports T cell-mediated regulation and IL-2-dependent IL-17 production. J Immunol. 2008;181:8189–93.

    Article  PubMed  CAS  Google Scholar 

  31. Radtke F, Fasnacht N, Macdonald HR. Notch signaling in the immune system. Immunity. 2010;32:14–27.

    Article  PubMed  CAS  Google Scholar 

  32. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284:770–6.

    Article  PubMed  CAS  Google Scholar 

  33. Radtke F, Wilson A, Mancini SJ, MacDonald HR. Notch regulationof lymphocyte development and function. Nat Immunol. 2004;5:247–53.

    Article  PubMed  CAS  Google Scholar 

  34. Maillard I, Fang T, Pear WS. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu Rev Immunol. 2005;23:945–74.

    Article  PubMed  CAS  Google Scholar 

  35. Fortini ME. Notch signaling: the core pathway and its posttranslational regulation. Dev Cell. 2009;16:633–47.

    Article  PubMed  CAS  Google Scholar 

  36. Fischer A, Gessler M. Delta-Notch: and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res. 2007;35:4583–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Deftos ML, Huang E, Ojala EW, Forbush KA, Bevan MJ. Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity. 2000;13:73–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Oswald F, Liptay S, Adler G, Schmid RM. NF-kB2 is a putative target gene of activated Notch-1 via RBP-Jk. Mol Cell Biol. 1998;18:2077–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ronchini C, Capobianco AJ. Induction of cyclin D1 transcription and CDK2 activity by Notchic: implication for cell cycle disruption in transformation by Notchic. Mol Cell Biol. 2001;21:5925–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, Aster JC, Krishna S, Metzger D, Chambon P. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 2001;20:3427–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Geling A, Steiner H, Willem M, Bally-Cuif L, Haass C. A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep. 2002;3(7):688–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kashino SS, Calich VLG, Singer-Vermes LM, Abrahamsohm PA, Burger E. Growth curves, morphology and ultrastructure of tem Paracoccidioides brasiliensis isolates. Mycopathologia. 1987;99:119–28.

    Article  PubMed  CAS  Google Scholar 

  43. Gonzales A, Sahaza JH, Ortiz BL, Restrepo A, Cano LE. Production of pro-inflammatory cytokines during the early stages of experimental Paracoccidioides brasiliensis infection. Med Mycol. 2003;41:391–9.

    Article  CAS  Google Scholar 

  44. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, et al. Generation ofclarge numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med. 1992;176:1693–7.

    Article  PubMed  CAS  Google Scholar 

  45. Morohashi Y, Kan T, Tominari Y, Fuwa H, Okamura Y, Watanabe N, Sato C, Natsugari H, Fukuyama T, Iwatsubo T, Tomita T. C-terminal fragment of presenilin is the molecular target of a dipeptidic γ-secretase-specific inhibitor DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester). J Biol Chem. 2006;281:14670–6.

    Article  PubMed  CAS  Google Scholar 

  46. Pérez-Cabezas B, Naranjo-Gómez M, Ruiz-Riol M, Bastos-Amador P, Fernández MA, Carmona F, Nuñez F, Pujol-Borrell R, Borras FE. TLR-activated conventional DCs promote -secretase-mediated conditioning of plasmacytoid DCs. J Leukoc Biol. 2012;92:133–43.

    Article  PubMed  CAS  Google Scholar 

  47. Tesone AJ, Rutkowski MR, Brencicova E, Svoronos N, Perales-Puchalt A, Stephen TL, Allegreza MJ, Payne KK, Nguyen JM, Wickramasinghe J, Tchou J, Borowsky ME, Rabinovich GA, Kossenkov AV, Conejo-Garcia JR. Satb1 overexpression drives tumor-promoting activities in cancer-associated dendritic cells. Cell Rep. 2016;14(7):1774–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Xu H, Zhu J, Smith S, Foldi J, Zhao B, Chung AY, Outtz H, Kitajewski J, Shi C, Weber S, Saftig P, Li Y, Ozato K, Blobel CP, Ivashkiv LB, Hu X. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol. 2012;13:642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Rescigno M, Martino M, Sutherland CL, Gold MR, Castagnoli RP. Dendritic cell survival and maturation are regulated by different signaling pathways. J Exp Med. 1998;188:2175–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Krappmann D, Wegener E, Sunami Y, Esen M, Thiel A, Mordmuller B, Scheidereit C. The IκB kinase complex and NF-κB act as master regulators of lipopolysaccharide-induced gene expression and control subordinate activation of AP-1. Mol Cell Biol. 2004;24:6488–500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Sallusto F, Palermo B, Lenig D, Miettinen M, Matikainen S, Julkunen I, Forster R, Burgstahler R, Lipp M, Lanzavecchia A. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur J Immunol. 1999;29:1617–25.

    Article  PubMed  CAS  Google Scholar 

  52. Cumberbatch M, Kimber I. Dermal tumour necrosis factor-alpha induces dendritic cell migration to draining lymph nodes, and possibly provides one stimulus for Langerhans’ cell migration. Immunology. 1992;75:257–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Ohishi K, Varnum-Finney B, Serda RE, Anasetti C, Bernstein ID. The Notch ligand, Delta-1, inhibits the differentiation of monocytes into macrophages but permits their differentiation into dendritic cells. Blood. 2001;98:1402–7.

    Article  PubMed  CAS  Google Scholar 

  54. Cheng P, Nefedova Y, Miele L, Osborne BA, Gabrilovich D. Notch signaling is necessary but not sufficient for differentiation of dendritic cells. Blood. 2003;102:3980–8.

    Article  PubMed  CAS  Google Scholar 

  55. Cheng P, Nefedova Y, Corzo CA, Gabrilovich DI. Regulation of dendritic-cell differentiation by bone marrow stroma via different Notch ligands. Blood. 2006;109:507–15.

    Article  PubMed  CAS  Google Scholar 

  56. Pérez-Cabezas B, Naranjo-Gómez M, Bastos-Amador P, Requena-Fernández G, Pujol-Borrell R, Borràs FE. Ligation of Notch receptors in human conventional and plasmacytoid dendritic cells differentially regulates cytokine and chemokine secretion and modulates Th cell polarization. J Immunol. 2011;186:7006–15.

    Article  PubMed  CAS  Google Scholar 

  57. Cheng P, Nefedova Y, Miele L, Osborne BA, Gabrilovich D. Notch signaling is necessary but not sufficient for differentiation of dendritic cells. Blood. 2003;102:3980–8.

    Article  PubMed  CAS  Google Scholar 

  58. Li J, Jiang H, Wen W, Zheng J, Xu G. The dendritic cell mannose receptor mediates allergen internalization and maturation involving notch 1 signalling. Clin Exp Immunol. 2010;162(2):251–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Brombacher F, Dorfmüller A, Magram J, Dai WJ, Köhler G, Wunderlin A, Palmer-Lehmann K, Gately MK, Alber G. IL-12 is dispensable for innate and adaptive immunity against low doses of Listeria monocytogenes. Int Immunol. 1999;11:325–32.

    Article  PubMed  CAS  Google Scholar 

  60. Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol. 2005;6:769–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Debarry J, Garn H, Hanuszkiewicz A, Dickgreber N, Blümer N, von Mutius E, Bufe A, Gatermann S, Renz H, Holst O, Heine H. Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties. J Allergy Clin Immunol. 2007;119:1514–21.

    Article  PubMed  Google Scholar 

  62. Svensson A, Jäkärä E, Shestakov A, Eriksson K. Inhibition of γ-secretase cleavage in the notch signaling pathway blocks HSV-2-induced type I and type II interferon production. Viral Immunol. 2010;23:647–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Holla S, Stephen-Victor E, Prakhar P, Sharma M, Saha C, Udupa V, Kaveri SV, Bayry J, Balaji KN. Mycobacteria-responsive sonic hedgehog signaling mediates programmed death-ligand 1- and prostaglandin E2-induced regulatory T cell expansion. Sci Rep. 2016;6:24193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Rescigno M, Martino M, Sutherland CL, Gold MR, Castagnoli RP. Dendritic cell survival and maturation are regulated by different signaling pathways. J Exp Med. 1998;188:2175–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Fan F, Yao-Chun W, Xing-Bin Hu, Xiao-Wei L, Ji Gang, Yun-Ru C, Lin W, Fei H, Guo-Rui D, Liang L, Hong-Wei Z, Hua H. The transcription factor RBP-J-mediated signaling is essential for dendritic cells to evoke efficient anti-tumor immune responses in mice. Mol Cancer. 2010;9:90.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from FAPESP (Process 2015/17338-0) and CNPq.

Funding

Funding

This study was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP, and from Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grasielle Pereira Jannuzzi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Anamelia Lorenzetti Bocca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jannuzzi, G.P., de Almeida, J.R.F., dos Santos, S.S. et al. Notch Signaling is Required for Dendritic Cell Maturation and T Cell Expansion in Paracoccidioidomycosis. Mycopathologia 183, 739–749 (2018). https://doi.org/10.1007/s11046-018-0276-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-018-0276-3

Keywords

Navigation