Skip to main content

Advertisement

Log in

SLC12A5 as a novel potential biomarker of glioblastoma multiforme

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Glioblastoma multiforme (GBM) is the most prevalent and malignant intracranial tumor with significant features of dismal prognosis and limited therapeutic solutions. Consequently, the present studies are committed to exploring potential biomarkers through bioinformatics analysis, which may serve as valuable prognostic predictors or novel therapeutic targets and provide new insights into the pathogenesis of GBM.

Methods

We filtered overlapping differentially expressed genes (DEGs) based on expression profilings from three GBM microarray datasets (GSE116520, GSE4290 and GSE68848) and combined RNA sequencing data from The Cancer Genome Atlas and the Genotype-Tissue Expression databases. Hub genes were prioritized from DEGs after performing protein–protein interaction (PPI) network analysis and weighted gene co-expression network analysis (WGCNA). This was followed by survival analysis to identify potential biomarkers among hub genes. Ultimately, the distributions of gene expressions, genetic alterations, upstream regulatory mechanisms and enrichments of gene functions of the identified biomarkers were analysed on public databases. QRT-PCR, immunohistochemical staining and western blotting was also used to confirm the gene expression patterns in GBM and normal brain tissues. CCK-8 assay clarified the effects of the genes on GBM cells.

Results

A total of 322 common DEGs were determined and nine genes were subsequently considered as hub genes by the combination of PPI network analysis and WGCNA. Only SLC12A5 had prognostic significance, which was deficient in GBM whereas especially enriched in normal neural tissues. SLC12A5 overexpression would inhibit cell proliferation of U251MG. Genetic alterations of SLC12A5 were rarely seen in GBM patients, and there was no apparent association existed between SLC12A5 expression and DNA methylation. SLC12A5 was prominently involved in ion transport, synapse and neurotransmitter.

Conclusion

SLC12A5 shows promise to function as a novel effective biomarker for GBM and deserves further systematic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The web links of the related public datasets or databases are as follows: GSE116520: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116520; GSE4290: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4290; GSE68848: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68848; GEPIA: http://gepia.cancer-pku.cn/; STRING: http://string.embl.de/; CGGA: http://cgga.org.cn/; HPA: http://www.proteinatlas.org/; cBioportal: https://www.cbioportal.org/; NCBI: http://www.ncbi.nlm.nih.gov; JASPAR: https://jaspar.genereg.net/; Metascape: http://metascape.org/; GSEA: http://www.broad.mit.edu/gsea/; GeneMANIA: http://genemania.org/. All the accesses above are open. Other data are available upon request.

Abbreviations

GBM:

Glioblastoma multiforme

CALD1:

Caldesmon 1

TREM1:

Triggering receptor expressed on myeloid cells 1

TMZ:

Temozolomide

PLK2:

Polo like kinase 2

GEO:

Gene expression omnibus

DEG:

Differentially expressed gene

TCGA:

The cancer genome atlas

GTEx:

Genotype-tissue expression

PPI:

Protein–protein interaction

WGCNA:

Weighted gene co-expression network analysis

CGGA:

Chinese glioma genome atlas

FC:

Fold change

GEPIA:

Gene expression profiling interactive analysis

RNA:

Ribonucleic acid

STRING:

Search tool for the retrieval of interaction genes

MCODE:

Molecular complex detection

OS:

Overall survival

cDNA:

Complementary deoxyribonucleic acid

qRT-PCR:

Quantitative real-time polymerase chain reaction

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

IHC:

Immunohistochemical

CCK-8:

Cell counting Kit-8

HPA:

Human protein atlas

cBioportal:

CBio cancer genomics portal

GO:

Gene ontology

BP:

Biological process

CC:

Cellular component

MF:

Molecular function

KEGG:

Kyoto encyclopedia of genes and genomes

GSEA:

Gene set enrichment analysis

HR:

Hazard ratio

LGG:

Lower grade glioma

GPCR:

G Protein-coupled receptor

SLC12A5:

Solute carrier family 12 member 5

KCC2:

K( +)-Cl(−) cotransporter-2

GABA:

Gamma-aminobutyric acid

MECP2:

Methyl-CpG binding protein 2

REST:

RE1 silencing transcription factor

EGR4:

Early growth response 4

SOX18:

SRY-box transcription factor 18

PATZ1:

POZ/BTB and AT hook containing zinc finger 1

SP2:

Specific protein 2

ARNT2:

Aryl hydrocarbon receptor nuclear translocator 2

USF2:

Upstream stimulatory factor 2

UTR:

Untranslated region

TWIST1:

Twist family bHLH transcription factor 1

References

  1. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP, Bent M, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):434–435. https://doi.org/10.1016/S1470-2045(09)70025-7

    Article  CAS  Google Scholar 

  3. Hu LS, Hawkins-Daarud A, Wang L, Li J, Swanson KR (2020) Imaging of intratumoral heterogeneity in high-grade glioma. Cancer Lett 477:97–106. https://doi.org/10.1016/j.canlet.2020.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang L, Peng Y, Ye W, Zeng W, Liu Z, Cheng Q (2022) Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer 21(1):39. https://doi.org/10.1186/s12943-022-01513-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheng Q, Tang A, Wang Z, Fang N, Zhang Z, Zhang L, Li C, Zeng Y (2021) CALD1 modulates gliomas progression via facilitating tumor angiogenesis. Cancers. https://doi.org/10.3390/cancers13112705

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kong Y, Feng Z, Zhang Y, Liu X, Ma Y, Zhao Z, Huang B, Chen A, Zhang D, Thorsen F, Wang J, Yang N, Li X (2020) Identification of immune-related genes contributing to the development of glioblastoma using weighted gene co-expression network analysis. Front Immunol 11:1281. https://doi.org/10.3389/fimmu.2020.01281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alafate W, Xu D, Wu W, Xiang J, Ma X, Xie W, Bai X, Wang M, Wang J (2020) Loss of PLK2 induces acquired resistance to temozolomide in GBM via activation of notch signaling. J Exp Clin Cancer Res 39(1):239. https://doi.org/10.1186/s13046-020-01750-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barrett T, Wilhite S, Ledoux P, Evangelista C, Kim I, Tomashevsky M, Marshall K, Phillippy K, Sherman P, Holko M, Yefanov A, Lee H, Zhang N, Robertson C, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 41:D991-995. https://doi.org/10.1093/nar/gks1193

    Article  CAS  PubMed  Google Scholar 

  9. Kruthika B, Jain R, Arivazhagan A, Bharath R, Yasha T, Kondaiah P, Santosh V (2019) Transcriptome profiling reveals PDZ binding kinase as a novel biomarker in peritumoral brain zone of glioblastoma. J Neurooncol 141(2):315–325. https://doi.org/10.1007/s11060-018-03051-5

    Article  CAS  PubMed  Google Scholar 

  10. Sun L, Hui A, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, Passaniti A, Menon J, Walling J, Bailey R, Rosenblum M, Mikkelsen T, Fine H (2006) Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9(4):287–300. https://doi.org/10.1016/j.ccr.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  11. Madhavan S, Zenklusen J, Kotliarov Y, Sahni H, Fine H, Buetow K (2009) Rembrandt: helping personalized medicine become a reality through integrative translational research. Mol Cancer Res MCR 7(2):157–167. https://doi.org/10.1158/1541-7786.Mcr-08-0435

    Article  CAS  PubMed  Google Scholar 

  12. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45:W98–W102. https://doi.org/10.1093/nar/gkx247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Szklarczyk D, Gable A, Nastou K, Lyon D, Kirsch R, Pyysalo S, Doncheva N, Legeay M, Fang T, Bork P, Jensen L, von Mering C (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49:D605–D612. https://doi.org/10.1093/nar/gkaa1074

    Article  CAS  PubMed  Google Scholar 

  14. Ge S, Son E, Yao R (2018) iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinfo 19(1):534. https://doi.org/10.1186/s12859-018-2486-6

    Article  CAS  Google Scholar 

  15. Zhao Z, Zhang K, Wang Q, Li G, Zeng F, Zhang Y, Wu F, Chai R, Wang Z, Zhang C, Zhang W, Bao Z, Jiang T (2021) Chinese glioma genome atlas (CGGA): a comprehensive resource with functional genomic data from Chinese glioma patients. Genom Proteom Bioinfo. https://doi.org/10.1016/j.gpb.2020.10.005

    Article  Google Scholar 

  16. Zhao Z, Meng F, Wang W, Wang Z, Zhang C, Jiang T (2017) Comprehensive RNA-seq transcriptomic profiling in the malignant progression of gliomas. Scientific Data 4:170024. https://doi.org/10.1038/sdata.2017.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, Qian T, You G, Peng X, Chen C, You Y, Yao K, Wu C, Ma J, Sha Z, Wang S, Jiang T (2015) Localizing seizure-susceptible brain regions associated with low-grade gliomas using voxel-based lesion-symptom mapping. Neuro Oncol 17(2):282–288. https://doi.org/10.1093/neuonc/nou130

    Article  PubMed  Google Scholar 

  18. Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, Sanli K, von Feilitzen K, Oksvold P, Lundberg E, Hober S, Nilsson P, Mattsson J, Schwenk J, Brunnström H, Glimelius B, Sjöblom T, Edqvist P, Djureinovic D, Micke P, Lindskog C, Mardinoglu A, Ponten F (2017) A pathology atlas of the human cancer transcriptome. Science. https://doi.org/10.1126/science.aan2507

    Article  PubMed  Google Scholar 

  19. Cerami E, Gao J, Dogrusoz U, Gross B, Sumer S, Aksoy B, Jacobsen A, Byrne C, Heuer M, Larsson E, Antipin Y, Reva B, Goldberg A, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404. https://doi.org/10.1158/2159-8290.Cd-12-0095

    Article  PubMed  Google Scholar 

  20. Gao J, Aksoy B, Dogrusoz U, Dresdner G, Gross B, Sumer S, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. https://doi.org/10.1126/scisignal.2004088

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hu H, Miao Y, Jia L, Yu Q, Zhang Q, Guo A (2019) AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res 47:D33–D38. https://doi.org/10.1093/nar/gky822

    Article  CAS  PubMed  Google Scholar 

  22. Gene Ontology C (2021) The gene ontology resource: enriching a gold mine. Nucleic Acids Res 49(D1):D325–D334. https://doi.org/10.1093/nar/gkaa1113

    Article  CAS  Google Scholar 

  23. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K, Cook J, Gillespie M, Haw R, Loney F, May B, Milacic M, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Weiser J, Wu G, Stein L, Hermjakob H, D’Eustachio P (2020) The reactome pathway knowledgebase. Nucleic Acids Res 48:D498–D503. https://doi.org/10.1093/nar/gkz1031

    Article  CAS  PubMed  Google Scholar 

  24. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34. https://doi.org/10.1093/nar/27.1.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi A, Tanaseichuk O, Benner C, Chanda S (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10(1):1523. https://doi.org/10.1038/s41467-019-09234-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M, Paulovich A, Pomeroy S, Golub T, Lander E, Mesirov J (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Warde-Farley D, Donaldson S, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes C, Maitland A, Mostafavi S, Montojo J, Shao Q, Wright G, Bader G, Morris Q (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214-220. https://doi.org/10.1093/nar/gkq537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sa J, Chang N, Lee H, Cho H, Ceccarelli M, Cerulo L, Yin J, Kim S, Caruso F, Lee M, Kim D, Oh Y, Lee Y, Her N, Min B, Kim H, Jeong D, Kim H, Kim H, Chung S, Woo H, Lee J, Kong D, Seol H, Lee J, Kim J, Park W, Wang Q, Sulman E, Heimberger A, Lim M, Park J, Iavarone A, Verhaak R, Nam D (2020) Transcriptional regulatory networks of tumor-associated macrophages that drive malignancy in mesenchymal glioblastoma. Genome Biol 21(1):216. https://doi.org/10.1186/s13059-020-02140-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Payne J, Stevenson T, Donaldson L (1996) Molecular characterization of a putative K-Cl cotransporter in rat brain. A neuronal-specific isoform. J Biol Chem 271(27):16245–16252. https://doi.org/10.1074/jbc.271.27.16245

    Article  CAS  PubMed  Google Scholar 

  30. Liu J, Dai Y, Li X, Cao K, Xie D, Tong Z, Long Z, Xiao H, Chen M, Ye Y, Liu B, Tan J, Tang J, Xu Z, Gan Y, Zhou Y, Deng F, He L (2017) Solute carrier family 12 member 5 promotes tumor invasion/metastasis of bladder urothelial carcinoma by enhancing NF-κB/MMP-7 signaling pathway. Cell Death Dis 8(3):e2691. https://doi.org/10.1038/cddis.2017.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu L, Li X, Cai M, Chen J, Li X, Wu W, Kang W, Tong J, To K, Guan X, Sung J, Chan F, Yu J (2016) Increased expression of Solute carrier family 12 member 5 via gene amplification contributes to tumour progression and metastasis and associates with poor survival in colorectal cancer. Gut 65(4):635–646. https://doi.org/10.1136/gutjnl-2014-308257

    Article  CAS  PubMed  Google Scholar 

  32. Wei W, Akerman C, Newey S, Pan J, Clinch N, Jacob Y, Shen M, Wilkins R, Ellory J (2011) The potassium-chloride cotransporter 2 promotes cervical cancer cell migration and invasion by an ion transport-independent mechanism. J Physiol 589:5349–5359. https://doi.org/10.1113/jphysiol.2011.214635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Campbell S, Robel S, Cuddapah V, Robert S, Buckingham S, Kahle K, Sontheimer H (2015) GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor-associated epilepsy. Glia 63(1):23–36. https://doi.org/10.1002/glia.22730

    Article  PubMed  Google Scholar 

  34. Pallud J, Le Van QM, Bielle F, Pellegrino C, Varlet P, Cresto N, Baulac M, Duyckaerts C, Kourdougli N, Chazal G, Devaux B, Rivera C, Miles R, Capelle L, Huberfeld G (2014) Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci Trans Med 6(244):244289. https://doi.org/10.1126/scitranslmed.3008065

    Article  CAS  Google Scholar 

  35. Conti L, Palma E, Roseti C, Lauro C, Cipriani R, de Groot M, Aronica E, Limatola C (2011) Anomalous levels of Cl- transporters cause a decrease of GABAergic inhibition in human peritumoral epileptic cortex. Epilepsia 52(9):1635–1644. https://doi.org/10.1111/j.1528-1167.2011.03111.x

    Article  CAS  PubMed  Google Scholar 

  36. Venkatesh H, Morishita W, Geraghty A, Silverbush D, Gillespie S, Arzt M, Tam L, Espenel C, Ponnuswami A, Ni L, Woo P, Taylor K, Agarwal A, Regev A, Brang D, Vogel H, Hervey-Jumper S, Bergles D, Suvà M, Malenka R, Monje M (2019) Electrical and synaptic integration of glioma into neural circuits. Nature 573(7775):539–545. https://doi.org/10.1038/s41586-019-1563-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yeo M, Berglund K, Augustine G, Liedtke W (2009) Novel repression of Kcc2 transcription by REST-RE-1 controls developmental switch in neuronal chloride. J Neurosci 29(46):14652–14662. https://doi.org/10.1523/jneurosci.2934-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tang X, Kim J, Zhou L, Wengert E, Zhang L, Wu Z, Carromeu C, Muotri A, Marchetto M, Gage F, Chen G (2016) KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome. Proc Natl Acad Sci USA 113(3):751–756. https://doi.org/10.1073/pnas.1524013113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Uvarov P, Ludwig A, Markkanen M, Rivera C, Airaksinen M (2006) Upregulation of the neuron-specific K+/Cl- cotransporter expression by transcription factor early growth response 4. J Neurosci 26(52):13463–13473. https://doi.org/10.1523/jneurosci.4731-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang L, Zhang Q, Wu P, Xiang W, Xie D, Wang N, Deng M, Cao K, Zeng H, Xu Z, Liu X, He L, Long Z, Tan J, Wang J, Liu B, Liu J (2020) SLC12A5 interacts and enhances SOX18 activity to promote bladder urothelial carcinoma progression via upregulating MMP7. Cancer Sci 111(7):2349–2360. https://doi.org/10.1111/cas.14502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Passariello A, Errico ME, Donofrio V, Maestrini M, Zerbato A, Cerchia L, Capasso M, Capasso M, Fedele M (2019) PATZ1 is overexpressed in pediatric glial tumors and correlates with worse event-free survival in high-grade gliomas. Cancers (Basel). https://doi.org/10.3390/cancers11101537

    Article  PubMed  Google Scholar 

  42. Yu S, Ruan X, Liu X, Zhang F, Wang D, Liu Y, Yang C, Shao L, Liu Q, Zhu L, Lin Y, Xue Y (2021) HNRNPD interacts with ZHX2 regulating the vasculogenic mimicry formation of glioma cells via linc00707/miR-651-3p/SP2 axis. Cell Death Dis 12(2):153. https://doi.org/10.1038/s41419-021-03432-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bogeas A, Morvan-Dubois G, El-Habr EA, Lejeune FX, Defrance M, Narayanan A, Kuranda K, Burel-Vandenbos F, Sayd S, Delaunay V, Dubois LG, Parrinello H, Rialle S, Fabrega S, Idbaih A, Haiech J, Bieche I, Virolle T, Goodhardt M, Chneiweiss H, Junier MP (2018) Changes in chromatin state reveal ARNT2 at a node of a tumorigenic transcription factor signature driving glioblastoma cell aggressiveness. Acta Neuropathol 135(2):267–283. https://doi.org/10.1007/s00401-017-1783-x

    Article  CAS  PubMed  Google Scholar 

  44. Markkanen M, Uvarov P, Airaksinen MS (2008) Role of upstream stimulating factors in the transcriptional regulation of the neuron-specific K-Cl cotransporter KCC2. Brain Res 1236:8–15. https://doi.org/10.1016/j.brainres.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  45. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(8):631–631

    Article  CAS  Google Scholar 

  46. Xia W, Mao Q, Chen B, Wang L, Ma W, Liang Y, Zhang T, Dong G, Xu L, Jiang F (2019) The TWIST1-centered competing endogenous RNA network promotes proliferation, invasion, and migration of lung adenocarcinoma. Oncogenesis 8(11):62. https://doi.org/10.1038/s41389-019-0167-6

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bagla S, Cukovic D, Asano E, Sood S, Luat A, Chugani H, Chugani D, Dombkowski A (2018) A distinct microRNA expression profile is associated with α[C]-methyl-L-tryptophan (AMT) PET uptake in epileptogenic cortical tubers resected from patients with tuberous sclerosis complex. Neurobiol Dis 109:76–87. https://doi.org/10.1016/j.nbd.2017.10.004

    Article  CAS  PubMed  Google Scholar 

  48. Hazra R, Utama R, Naik P, Dobin A, Spector DL (2023) Identification of glioblastoma stem cell-associated lncRNAs using single-cell RNA-sequencing datasets. bioRxiv. https://doi.org/10.1101/2023.01.20.524887

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lei Y, Tang R, Xu J, Wang W, Zhang B, Liu J, Yu X, Shi S (2021) Applications of single-cell sequencing in cancer research: progress and perspectives. J Hematol Oncol 14(1):91. https://doi.org/10.1186/s13045-021-01105-2

    Article  PubMed  PubMed Central  Google Scholar 

  50. Suva ML, Tirosh I (2019) Single-cell RNA sequencing in cancer: lessons learned and emerging challenges. Mol Cell 75(1):7–12. https://doi.org/10.1016/j.molcel.2019.05.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ting Tang and Hui Liang for their assistance in clinical specimen collection, but they may not qualify for authorship, which have been acknowledged with their permission.

Funding

This research was financially supported by the National Natural Science Foundation of China (No.81672503 and No.81702484).

Author information

Authors and Affiliations

Authors

Contributions

HW and JC conceived and designed the study. JC, CD and MF carried out experiments and took part in the data collection and analysis. JC wrote the original manuscript. HW reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Handong Wang.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Ethical approval

Our study complied with the principles of the Declaration of Helsinki and was approved by the Ethics Committee of Jinling Hospital (No.2017NZGKJ-086).

Informed consent

Written informed consents were sought from patients or related family members prior to specimen collection.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, H., Deng, C. et al. SLC12A5 as a novel potential biomarker of glioblastoma multiforme. Mol Biol Rep 50, 4285–4299 (2023). https://doi.org/10.1007/s11033-023-08371-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08371-y

Keywords

Navigation