Skip to main content

Advertisement

Log in

Soluble overexpression and purification of bioactive human CCL2 in E. coli by maltose-binding protein

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Human chemokine (C–C motif) ligand 2 (hCCL2) is a small cytokine in the CC chemokine family that attracts monocytes, memory T lymphocytes, and natural killer cells to the site of tissue injury- or infection-induced inflammation. hCCL2 has been implicated in the pathogeneses of diseases characterized by monocytic infiltrates, including psoriasis, rheumatoid arthritis, atherosclerosis, multiple sclerosis, and insulin-resistant diabetes. The prokaryotic overexpression of hCCL2 has been investigated previously in an attempt to develop biomedical applications for this factor, but this has been hampered by protein misfolding and aggregation into inclusion bodies. In our present study, we screened 7 protein tags—Trx, GST, MBP, NusA, His8, PDI, and PDIb′a′—for their ability to allow the soluble overexpression of hCCL2. Three tags—MBP, His8, and PDI—solubilized more than half of the expressed hCCL2 fusion proteins. Lowering the expression temperature to 18 °C significantly further improved the solubility of all fusion proteins. MBP was chosen for further study based on its solubility, expression level, ease of purification, and tag size. MBP-CCL2 was purified using conventional chromatography and cleaved using TEV or Factor Xa proteases. Biological activity was assessed using luciferase and cell migration assays. Factor Xa-cleaved hCCL2 was found to be active and TEV-cleaved hCCL2 showed relatively less activity. This is probably because the additional glycine residues present at the N-terminus of hCCL2 following TEV digestion interfere with the binding of hCCL2 to its receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354(6):610–621. doi:10.1056/NEJMra052723

    Article  CAS  PubMed  Google Scholar 

  2. Rollins BJ (1997) Chemokines. Blood 90(3):909–928

    CAS  PubMed  Google Scholar 

  3. Furutani Y, Nomura H, Notake M, Oyamada Y, Fukui T, Yamada M, Larsen CG, Oppenheim JJ, Matsushima K (1989) Cloning and sequencing of the cDNA for human monocyte chemotactic and activating factor (MCAF). Biochem Biophys Res Commun 159(1):249–255

    Article  CAS  PubMed  Google Scholar 

  4. Yoshimura T, Yuhki N, Moore SK, Appella E, Lerman MI, Leonard EJ (1989) Human monocyte chemoattractant protein-1 (MCP-1). Full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS Lett 244(2):487–493

    Article  CAS  PubMed  Google Scholar 

  5. Barna BP, Pettay J, Barnett GH, Zhou P, Iwasaki K, Estes ML (1994) Regulation of monocyte chemoattractant protein-1 expression in adult human non-neoplastic astrocytes is sensitive to tumor necrosis factor (TNF) or antibody to the 55-kDa TNF receptor. J Neuroimmunol 50(1):101–107

    Article  CAS  PubMed  Google Scholar 

  6. Brown Z, Strieter RM, Neild GH, Thompson RC, Kunkel SL, Westwick J (1992) IL-1 receptor antagonist inhibits monocyte chemotactic peptide 1 generation by human mesangial cells. Kidney Int 42(1):95–101

    Article  CAS  PubMed  Google Scholar 

  7. Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, Gerrity R, Schwartz CJ, Fogelman AM (1990) Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 87(13):5134–5138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Standiford TJ, Kunkel SL, Phan SH, Rollins BJ, Strieter RM (1991) Alveolar macrophage-derived cytokines induce monocyte chemoattractant protein-1 expression from human pulmonary type II-like epithelial cells. J Biol Chem 266(15):9912–9918

    CAS  PubMed  Google Scholar 

  9. Melgarejo E, Medina MA, Sanchez-Jimenez F, Urdiales JL (2009) Monocyte chemoattractant protein-1: a key mediator in inflammatory processes. Int J Biochem Cell Biol 41(5):998–1001. doi:10.1016/j.biocel.2008.07.018

    Article  CAS  PubMed  Google Scholar 

  10. Yadav A, Saini V, Arora S (2010) MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta 411(21–22):1570–1579. doi:10.1016/j.cca.2010.07.006

    Article  CAS  PubMed  Google Scholar 

  11. Kuna P, Reddigari SR, Rucinski D, Oppenheim JJ, Kaplan AP (1992) Monocyte chemotactic and activating factor is a potent histamine-releasing factor for human basophils. J Exp Med 175(2):489–493

    Article  CAS  PubMed  Google Scholar 

  12. Baggiolini M, Dahinden CA (1994) CC chemokines in allergic inflammation. Immunol Today 15(3):127–133. doi:10.1016/0167-5699(94)90156-2

    Article  CAS  PubMed  Google Scholar 

  13. Van Coillie E, Van Damme J, Opdenakker G (1999) The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev 10(1):61–86

    Article  PubMed  Google Scholar 

  14. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29(6):313–326. doi:10.1089/jir.2008.0027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ueda A, Kawamoto S, Igarashi T, Ishigatsubo Y, Tani K, Okubo T, Okuda K (1994) Human monocyte chemoattractant protein-1 expressed in a baculovirus system. Gene 140(2):267–272

    Article  CAS  PubMed  Google Scholar 

  16. Zhang YJ, Rutledge BJ, Rollins BJ (1994) Structure/activity analysis of human monocyte chemoattractant protein-1 (MCP-1) by mutagenesis. Identification of a mutated protein that inhibits MCP-1-mediated monocyte chemotaxis. J Biol Chem 269(22):15918–15924

    CAS  PubMed  Google Scholar 

  17. Needham M, Barratt D, Cerillo G, Green I, Warburton H, Anderson M, Sturgess N, Rollins B, Reilly C, Hollis M (1996) High level expression of human MCP-1 using the LCR/MEL expression system. Protein Expr Purif 7(2):173–182. doi:10.1006/prep.1996.0025

    Article  CAS  PubMed  Google Scholar 

  18. Beall CJ, Mahajan S, Kolattukudy PE (1992) Conversion of monocyte chemoattractant protein-1 into a neutrophil attractant by substitution of two amino acids. J Biol Chem 267(5):3455–3459

    CAS  PubMed  Google Scholar 

  19. Reid C, Rushe M, Jarpe M, van Vlijmen H, Dolinski B, Qian F, Cachero TG, Cuervo H, Yanachkova M, Nwankwo C, Wang X, Etienne N, Garber E, Bailly V, de Fougerolles A, Boriack-Sjodin PA (2006) Structure activity relationships of monocyte chemoattractant proteins in complex with a blocking antibody. Protein Eng Des Sel 19(7):317–324. doi:10.1093/protein/gzl015

    Article  CAS  PubMed  Google Scholar 

  20. Handel TM, Domaille PJ (1996) Heteronuclear (1H, 13C, 15 N) NMR assignments and solution structure of the monocyte chemoattractant protein-1 (MCP-1) dimer. Biochemistry 35(21):6569–6584. doi:10.1021/bi9602270

    Article  CAS  PubMed  Google Scholar 

  21. Paavola CD, Hemmerich S, Grunberger D, Polsky I, Bloom A, Freedman R, Mulkins M, Bhakta S, McCarley D, Wiesent L, Wong B, Jarnagin K, Handel TM (1998) Monomeric monocyte chemoattractant protein-1 (MCP-1) binds and activates the MCP-1 receptor CCR2B. J Biol Chem 273(50):33157–33165

    Article  CAS  PubMed  Google Scholar 

  22. Lu Q, Burns MC, McDevitt PJ, Graham TL, Sukman AJ, Fornwald JA, Tang X, Gallagher KT, Hunsberger GE, Foley JJ, Schmidt DB, Kerrigan JJ, Lewis TS, Ames RS, Johanson KO (2009) Optimized procedures for producing biologically active chemokines. Protein Expr Purif 65(2):251–260

    Article  CAS  PubMed  Google Scholar 

  23. Magistrelli G, Gueneau F, Muslmani M, Ravn U, Kosco-Vilbois M, Fischer N (2005) Chemokines derived from soluble fusion proteins expressed in Escherichia coli are biologically active. Biochem Biophys Res Commun 334(2):370–375. doi:10.1016/j.bbrc.2005.06.091

    Article  CAS  PubMed  Google Scholar 

  24. Kruszynski M, Stowell N, Das A, Seideman J, Tsui P, Brigham-Burke M, Nemeth JF, Sweet R, Heavner GA (2006) Synthesis and biological characterization of human monocyte chemoattractant protein 1 (MCP-1) and its analogs. J Pept Sci 12(1):25–32. doi:10.1002/psc.680

    Article  CAS  PubMed  Google Scholar 

  25. Busso D, Delagoutte-Busso B, Moras D (2005) Construction of a set gateway-based destination vectors for high-throughput cloning and expression screening in Escherichia coli. Anal Biochem 343(2):313–321. doi:10.1016/j.ab.2005.05.015

    Article  CAS  PubMed  Google Scholar 

  26. Song JA, Koo BK, Chong SH, Kwak J, Ryu HB, Nguyen MT, Vu TT, Jeong B, Kim SW, Choe H (2013) Expression and purification of biologically active human FGF2 containing the b’a’ domains of human PDI in Escherichia coli. Appl Biochem Biotechnol 170(1):67–80. doi:10.1007/s12010-013-0140-3

    Article  CAS  PubMed  Google Scholar 

  27. Yan WK, Goette M, Hofmann G, Zaror I, Sim J (2010) High-level soluble expression, purification and characterization of active human midkine from Escherichia coli. Protein Expr Purif 70(2):270–276. doi:10.1016/j.pep.2009.10.015

    Article  PubMed  Google Scholar 

  28. Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M (2012) Shuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact 11:56. doi:10.1186/1475-2859-11-56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kapust RB, Tozser J, Fox JD, Anderson DE, Cherry S, Copeland TD, Waugh DS (2001) Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng 14(12):993–1000

    Article  CAS  PubMed  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  31. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  32. Petsch D, Anspach FB (2000) Endotoxin removal from protein solutions. J Biotechnol 76(2–3):97–119

    Article  CAS  PubMed  Google Scholar 

  33. Han KH, Han KO, Green SR, Quehenberger O (1999) Expression of the monocyte chemoattractant protein-1 receptor CCR2 is increased in hypercholesterolemia. Differential effects of plasma lipoproteins on monocyte function. J Lipid Res 40(6):1053–1063

    CAS  PubMed  Google Scholar 

  34. Kim MJ, Tam FW (2011) Urinary monocyte chemoattractant protein-1 in renal disease. Clin Chim Acta 412(23–24):2022–2030. doi:10.1016/j.cca.2011.07.023

    Article  CAS  PubMed  Google Scholar 

  35. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22(11):1399–1408. doi:10.1038/nbt1029

    Article  CAS  PubMed  Google Scholar 

  36. Fahnert B, Lilie H, Neubauer P (2004) Inclusion bodies: formation and utilisation. Adv Biochem Eng Biotechnol 89:93–142

    CAS  PubMed  Google Scholar 

  37. Shirano Y, Shibata D (1990) Low temperature cultivation of Escherichia coli carrying a rice lipoxygenase L-2 cDNA produces a soluble and active enzyme at a high level. FEBS Lett 271(1–2):128–130

    Article  CAS  PubMed  Google Scholar 

  38. Ferrer M, Chernikova TN, Timmis KN, Golyshin PN (2004) Expression of a temperature-sensitive esterase in a novel chaperone-based Escherichia coli strain. Appl Environ Microbiol 70(8):4499–4504. doi:10.1128/AEM.70.8.4499-4504.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Vera A, Gonzalez-Montalban N, Aris A, Villaverde A (2007) The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnol Bioeng 96(6):1101–1106. doi:10.1002/bit.21218

    Article  CAS  PubMed  Google Scholar 

  40. Kim EK, Moon JC, Lee JM, Jeong MS, Oh C, Ahn SM, Yoo YJ, Jang HH (2012) Large-scale production of soluble recombinant amyloid-beta peptide 1-42 using cold-inducible expression system. Protein Expr Purif 86(1):53–57. doi:10.1016/j.pep.2012.08.021

    Article  CAS  PubMed  Google Scholar 

  41. Yi AR, Lee SR, Jang MU, Park JM, Eom HJ, Han NS, Kim TJ (2009) Cloning of dextransucrase gene from leuconostoc citreum HJ-P4 and its high-level expression in E. coli by low temperature induction. J Microbiol Biotechnol 19(8):829–835

    CAS  PubMed  Google Scholar 

  42. Imsoonthornruksa S, Noisa P, Parnpai R, Ketudat-Cairns M (2011) A simple method for production and purification of soluble and biologically active recombinant human leukemia inhibitory factor (hLIF) fusion protein in Escherichia coli. J Biotechnol 151(4):295–302. doi:10.1016/j.jbiotec.2010.12.020

    Article  CAS  PubMed  Google Scholar 

  43. Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6(2):125–136

    CAS  PubMed  Google Scholar 

  44. Kandror O, Goldberg AL (1997) Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci USA 94(10):4978–4981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Bach H, Mazor Y, Shaky S, Shoham-Lev A, Berdichevsky Y, Gutnick DL, Benhar I (2001) Escherichia coli maltose-binding protein as a molecular chaperone for recombinant intracellular cytoplasmic single-chain antibodies. J Mol Biol 312(1):79–93. doi:10.1006/jmbi.2001.4914

    Article  CAS  PubMed  Google Scholar 

  46. Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8(8):1668–1674. doi:10.1110/ps.8.8.1668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Liu Y, Zhao TJ, Yan YB, Zhou HM (2005) Increase of soluble expression in Escherichia coli cytoplasm by a protein disulfide isomerase gene fusion system. Protein Expr Purif 44(2):155–161. doi:10.1016/j.pep.2005.03.030

    Article  PubMed  Google Scholar 

  48. Kurokawa Y, Yanagi H, Yura T (2001) Overproduction of bacterial protein disulfide isomerase (DsbC) and its modulator (DsbD) markedly enhances periplasmic production of human nerve growth factor in Escherichia coli. J Biol Chem 276(17):14393–14399. doi:10.1074/jbc.M100132200

    CAS  PubMed  Google Scholar 

  49. Appenzeller-Herzog C, Ellgaard L (2008) The human PDI family: versatility packed into a single fold. Biochim Biophys Acta 1783(4):535–548. doi:10.1016/j.bbamcr.2007.11.010

    Article  CAS  PubMed  Google Scholar 

  50. Clark-Lewis I, Schumacher C, Baggiolini M, Moser B (1991) Structure-activity relationships of interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil chemotaxis, exocytosis, and receptor binding activities. J Biol Chem 266(34):23128–23134

    CAS  PubMed  Google Scholar 

  51. Hemmerich S, Paavola C, Bloom A, Bhakta S, Freedman R, Grunberger D, Krstenansky J, Lee S, McCarley D, Mulkins M, Wong B, Pease J, Mizoue L, Mirzadegan T, Polsky I, Thompson K, Handel TM, Jarnagin K (1999) Identification of residues in the monocyte chemotactic protein-1 that contact the MCP-1 receptor, CCR2. Biochemistry 38(40):13013–13025

    Article  CAS  PubMed  Google Scholar 

  52. Kitamoto S, Egashira K (2003) Anti-monocyte chemoattractant protein-1 gene therapy for cardiovascular diseases. Expert Rev Cardiovasc Ther 1(3):393–400. doi:10.1586/14779072.1.3.393

    Article  CAS  PubMed  Google Scholar 

  53. Robinson EA, Yoshimura T, Leonard EJ, Tanaka S, Griffin PR, Shabanowitz J, Hunt DF, Appella E (1989) Complete amino acid sequence of a human monocyte chemoattractant, a putative mediator of cellular immune reactions. Proc Natl Acad Sci USA 86(6):1850–1854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Lubkowski J, Bujacz G, Boque L, Domaille PJ, Handel TM, Wlodawer A (1997) The structure of MCP-1 in two crystal forms provides a rare example of variable quaternary interactions. Nat Struct Biol 4(1):64–69

    Article  CAS  PubMed  Google Scholar 

  55. Tan JH, Canals M, Ludeman JP, Wedderburn J, Boston C, Butler SJ, Carrick AM, Parody TR, Taleski D, Christopoulos A, Payne RJ, Stone MJ (2012) Design and receptor interactions of obligate dimeric mutant of chemokine monocyte chemoattractant protein-1 (MCP-1). J Biol Chem 287(18):14692–14702. doi:10.1074/jbc.M111.334201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. de Marco A (2012) Recent contributions in the field of the recombinant expression of disulfide bonded proteins in bacteria. Microb Cell Fact 11:129. doi:10.1186/1475-2859-11-129

    Article  PubMed Central  PubMed  Google Scholar 

  57. Denoncin K, Collet JF (2013) Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead. Antioxid Redox Signal 19(1):63–71. doi:10.1089/ars.2012.4864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Mergulhao FJ, Summers DK, Monteiro GA (2005) Recombinant protein secretion in Escherichia coli. Biotechnol Adv 23(3):177–202. doi:10.1016/j.biotechadv.2004.11.003

    Article  CAS  PubMed  Google Scholar 

  59. Jiang Y, Valente AJ, Williamson MJ, Zhang L, Graves DT (1990) Post-translational modification of a monocyte-specific chemoattractant synthesized by glioma, osteosarcoma, and vascular smooth muscle cells. J Biol Chem 265(30):18318–18321

    CAS  PubMed  Google Scholar 

  60. Jiang Y, Tabak LA, Valente AJ, Graves DT (1991) Initial characterization of the carbohydrate structure of MCP-1. Biochem Biophys Res Commun 178(3):1400–1404

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Priority Research Center Program (2009-0094050) and the Korea Research Foundation (2010-0029522) funded by the Ministry of Education, Science and Technology, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Choe.

Additional information

Thu Trang Thi Vu and Bon-Kyung Koo have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, T.T.T., Koo, BK., Song, JA. et al. Soluble overexpression and purification of bioactive human CCL2 in E. coli by maltose-binding protein. Mol Biol Rep 42, 651–663 (2015). https://doi.org/10.1007/s11033-014-3812-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3812-3

Keywords

Navigation