Skip to main content

Advertisement

Log in

MicroRNA repertoire for functional genome research in tilapia identified by deep sequencing

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The Nile tilapia (Oreochromis niloticus; Cichlidae) is an economically important species in aquaculture and occupies a prominent position in the aquaculture industry. MicroRNAs (miRNAs) are a class of noncoding RNAs that post-transcriptionally regulate gene expression involved in diverse biological and metabolic processes. To increase the repertoire of miRNAs characterized in tilapia, we used the Illumina/Solexa sequencing technology to sequence a small RNA library using pooled RNA sample isolated from the different developmental stages of tilapia. Bioinformatic analyses suggest that 197 conserved and 27 novel miRNAs are expressed in tilapia. Sequence alignments indicate that all tested miRNAs and miRNAs* are highly conserved across many species. In addition, we characterized the tissue expression patterns of five miRNAs using real-time quantitative PCR. We found that miR-1/206, miR-7/9, and miR-122 is abundantly expressed in muscle, brain, and liver, respectively, implying a potential role in the regulation of tissue differentiation or the maintenance of tissue identity. Overall, our results expand the number of tilapia miRNAs, and the discovery of miRNAs in tilapia genome contributes to a better understanding the role of miRNAs in regulating diverse biological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  2. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  3. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  PubMed  Google Scholar 

  4. Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  CAS  PubMed  Google Scholar 

  5. Sunkar R, Li Y-F, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  6. Lacerda SM, Batlouni SR, Costa GM et al (2010) A new and fast technique to generate offspring after germ cells transplantation in adult fish: the Nile tilapia (Oreochromis niloticus) model. PLoS ONE 5:e10740

    Article  PubMed Central  PubMed  Google Scholar 

  7. Kocher TD (2004) Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Genet 5:288–298

    Article  CAS  PubMed  Google Scholar 

  8. Won Y-J, Wang Y, Sivasundar A, Raincrow J, Hey J (2006) Nuclear gene variation and molecular dating of the cichlid species flock of Lake Malawi. Mol Biol Evol 23:828–837

    Article  CAS  PubMed  Google Scholar 

  9. Hulsey CD (2006) Function of a key morphological innovation: fusion of the cichlid pharyngeal jaw. Proc R Soc Edinb Biol 273:669–675

    Article  Google Scholar 

  10. Mazzuchelli J, Kocher T, Yang F, Martins C (2012) Integrating cytogenetics and genomics in comparative evolutionary studies of cichlid fish. BMC Genomics 13:463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. David R (2012) Non-coding RNAs: a new member of the family. Nat Rev Mol Cell Biol 13:686

    Article  CAS  PubMed  Google Scholar 

  12. Loh Y-HE, Katz LS, Mims MC, Kocher TD, Yi SV, Streelman JT (2008) Comparative analysis reveals signatures of differentiation amid genomic polymorphism in Lake Malawi cichlids. Genome Biol 9:R113

    Article  PubMed Central  PubMed  Google Scholar 

  13. Loh Y-HE, Soojin VY, Streelman JT (2011) Evolution of microRNAs and the diversification of species. Genome Biol Evol 3:55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Yan B, Guo J-T, Zhao L-H, Zhao J-L (2012) microRNA expression signature in skeletal muscle of Nile tilapia. Aquaculture 364–365(5):240–246

    Article  Google Scholar 

  15. Huang C, Li Y, Hu S et al (2012) Differential expression patterns of growth-related microRNAs in the skeletal muscle of Nile tilapia (Oreochromis niloticus). J Anim Sci 90:4266–4279

    Article  CAS  PubMed  Google Scholar 

  16. Loh Y-HE, Katz LS, Mims MC, Kocher TD, Yi SV, Streelman JT (2008) Comparative analysis reveals signatures of differentiation amid genomic polymorphism in Lake Malawi cichlids. Genome Biol 9:R113

    Article  PubMed Central  PubMed  Google Scholar 

  17. Loh Y-HE, Soojin VY, Streelman JT (2011) Evolution of microRNAs and the diversification of species. Genome Biol Evol 3:55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Fujimura K, Okada N (2007) Development of the embryo, larva and early juvenile of Nile tilapia Oreochromis niloticus (Pisces: Cichlidae). Developmental staging system. Dev Growth Differ 49:301–324

    Article  PubMed  Google Scholar 

  19. Li R, Yu C, Li Y et al (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  20. Gardner PP, Daub J, Tate JG et al (2009) Rfam: updates to the RNA families database. Nucleic Acids Res 37:D136–D140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed Central  PubMed  Google Scholar 

  23. Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18:505–516

    Article  CAS  PubMed  Google Scholar 

  24. Horner DS, Pavesi G, Castrignanò T et al (2010) Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing. Brief Bioinform 11:181–197

    Article  CAS  PubMed  Google Scholar 

  25. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Pasquinelli AE, Reinhart BJ, Slack F et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89

    Article  CAS  PubMed  Google Scholar 

  27. Yang B, Lin H, Xiao J et al (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13:486–491

    Article  CAS  PubMed  Google Scholar 

  28. Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10:141–148

    Article  CAS  PubMed  Google Scholar 

  29. Maragkakis M, Alexiou P, Papadopoulos GL et al (2009) Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics 10:295

    Article  PubMed Central  PubMed  Google Scholar 

  30. Li Y, Zhang Z, Liu F, Vongsangnak W, Jing Q, Shen B (2012) Performance comparison and evaluation of software tools for microRNA deep-sequencing data analysis. Nucleic Acids Res 40:4298–4305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Berezikov E, Robine N, Samsonova A et al (2011) Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res 21:203–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12:846–860

    Article  CAS  PubMed  Google Scholar 

  33. Hertel J, Bartschat S, Wintsche A, Otto C, Stadler PF (2012) Evolution of the let-7 microRNA Family. RNA Biol 9:231–241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Christodoulou F, Raible F, Tomer R et al (2010) Ancient animal microRNAs and the evolution of tissue identity. Nature 463:1084–1088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Niwa R, Slack FJ (2007) The evolution of animal microRNA function. Curr Opin Genet Dev 17:145–150

    Article  CAS  PubMed  Google Scholar 

  36. Liu N, Okamura K, Tyler DM, Phillips MD, Chung W-J, Lai EC (2008) The evolution and functional diversification of animal microRNA genes. Cell Res 18:985–996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Noland CL, Doudna JA (2013) Multiple sensors ensure guide strand selection in human RNAi pathways. RNA 19:639–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  CAS  PubMed  Google Scholar 

  39. Lu J, Shen Y, Wu Q et al (2008) The birth and death of microRNA genes in Drosophila. Nat Genet 40:351–355

    Article  CAS  PubMed  Google Scholar 

  40. Meunier J, Lemoine F, Soumillon M et al (2013) Birth and expression evolution of mammalian microRNA genes. Genome Res 23:34–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Yan B, Zhu C-D, Guo J-T, Zhao L-H, Zhao J-L (2013) miR-206 regulates the growth of the teleost tilapia (Oreochromis niloticus) through the modulation of IGF-1 gene expression. J Exp Biol 216:1265–1269

    Article  CAS  PubMed  Google Scholar 

  42. Yan B, Zhao J-L (2012) MiR-30c: a novel regulator of salt tolerance in tilapia. Biochem Biophys Res Commun 452:153–320

    Google Scholar 

Download references

Acknowledgments

This work was supported by Shanghai Educational Development Foundation (Grant No. 12CG56 to B.Y.), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123104120005 to B.Y.), and China Agriculture Research System (Grant No.CARS-49-4B to J.-L.Z.).

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biao Yan or Jin-Liang Zhao.

Additional information

Biao Yan and Zhen-Hua Wang have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, B., Wang, ZH., Zhu, CD. et al. MicroRNA repertoire for functional genome research in tilapia identified by deep sequencing. Mol Biol Rep 41, 4953–4963 (2014). https://doi.org/10.1007/s11033-014-3361-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3361-9

Keywords

Navigation