Skip to main content
Log in

In vitro analysis of splice site mutations in the CLCN1 gene using the minigene assay

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mutations in the chloride channel gene CLCN1 cause the allelic disorders Thomsen (dominant) and Becker (recessive) myotonia congenita (MC). The encoded protein, ClC-1, is the primary channel that mediates chloride (Cl) conductance in skeletal muscle. Mutations in CLCN1 lower the channel’s threshold voltage, leading to spontaneous action potentials that are not coupled to neuromuscular transmission and resulting in myotonia. Over 120 mutations in CLCN1 have been described, 10 % of which are splicing defects. Biological specimens suitable for RNA extraction are not always available, but obtaining genomic DNA for analysis is easy and non-invasive. This is the first study to evaluate the pathogenic potential of novel splicing mutations using the minigene approach, which is based on genomic DNA analysis. Splicing mutations accounted for 23 % of all pathogenic variants in our cohort of MC patients. Four were heterozygous mutations in four unrelated individuals, belonging to this cohort: c.563G>T in exon 5; c.1169-5T>G in intron 10; c.1251+1G>A in intron 11, and c.1931-2A>G in intron 16. These variants were expressed in HEK 293 cells, and aberrant splicing was verified by in vitro transcription and sequencing of the cDNA. Our findings confirm the need to further investigate the nature of rearrangements associated with this class of mutations and their effects on mature transcripts. In particular, splicing mutations predicted to generate in-frame transcripts may generate out-of-frame mRNA transcripts that do not produce functional ClC-1. Clinically, incomplete molecular evaluation could lead to delayed or faulty diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Koch MC, Steinmeyer K, Lorenz C, Ricker K, Wolf F, Otto M, Zoll B, Lehmann-Horn F, Grzeschik KH, Jentsch TJ (1992) The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 257:797–800

    Article  CAS  PubMed  Google Scholar 

  2. Pusch M (2002) Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum Mutat 19:423–434

    Article  CAS  PubMed  Google Scholar 

  3. Duno M, Colding-Jørgensen E (2008) Myotonia congenita. Gene Rev 8:1–15

    Article  Google Scholar 

  4. Trivedi JR, Bundy B, Statland J, Salajegheh M, Rayan DR, Venance SL, Wang Y, Fialho V, Matthews E, Cleland J, Gorham N, Herbelin L, Cannon S, Amato A, Griggs RC, Hanna MG, Barohn RJ, The CINCH Consortium (2013) Non-dystrophic myotonia: prospective study of objective and patient reported outcomes. Brain 136:2198–2200

    Article  Google Scholar 

  5. Fialho D, Kullmann DM, Hanna MG, Schorge S (2008) Non-genomic effects of sex hormones on ClC-1 may contribute to gender differences in myotonia congenita. Neuromuscul Disord 18:869–872

    Article  PubMed  Google Scholar 

  6. Burge JA, Hanna MG, Schorge S (2013) Nongenomic actions of progesterone and 17β-estradiol on the chloride conductance of skeletal muscle. Muscle Nerve 48:589–591

    Article  CAS  PubMed  Google Scholar 

  7. Matthews E, Fialho D, Tan SV, Venance SL, Cannon SC, Sternberg D, Fontaine B, Amato AA, Barohn RJ, Griggs RC, Hanna MG, CINCH Investigators (2010) The non-dystrophic myotonias: molecular pathogenesis, diagnosis and treatment. Brain 133:9–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ulzi G, Lecchi M, Sansone V, Redaelli E, Corti E, Saccomanno D, Pagliarani S, Corti S, Magri F, Raimondi M, D’Angelo G, Modoni A, Bresolin N, Meola G, Wanke E, Comi GP, Lucchiari S (2012) Myotonia congenita: novel mutations in CLCN1 gene and functional characterizations in Italian patients. J Neurol Sci 318:65–71

    Article  CAS  PubMed  Google Scholar 

  9. Brugnoni R, Kapetis D, Imbrici P, Pessia M, Canioni E, Colleoni L, Kerlero de Rosbo N, Morandi L, Cudia P, Gashemi N, Bernasconi P, Desaphy J-F, Conte D, Mantegazza R (2013) A large color ao myotonia congenita probands: novel mutations and high-frequency mutation region in exon 4 and 5 of the CLCN1 gene. J Hum Gen 58:581–587

    Article  CAS  Google Scholar 

  10. Fahlke C, Desai RR, Gillani N, George AL Jr (2001) Residues lining the inner pore vestibule of human muscle chloride channels. J Biol Chem 276:1759–1765

    Article  CAS  PubMed  Google Scholar 

  11. George AL Jr, Sloan-Brown K, Fenichel GM, Mitchell GA, Spiegel R, Pascuzzi RM (1994) Nonsense and missense mutations of the muscle chloride channel gene in patients with myotonia congenita. Hum Mol Genet 3:2071–2072

    CAS  PubMed  Google Scholar 

  12. Meyer-Kleine C, Steinmeyer K, Ricker K, Jentsch TJ, Koch MC (1995) Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia. Am J Hum Genet 57:1325–1334

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Dunø M, Colding-Jørgensen E, Grunnet M, Jespersen T, Vissing J, Schwartz M (2004) Difference in allelic expression of the CLCN1 gene and the possible influence on the myotonia congenita phenotype. Eur J Hum Genet 12:738–743

    Article  PubMed  Google Scholar 

  14. Colding-Jørgensen E (2005) Phenotypic variability in myotonia congenita. Muscle Nerve 32:19–34

    Article  PubMed  Google Scholar 

  15. Richardson RC, Tarleton JC, Bird TD, Gospe SM Jr (2013) Truncating CLCN1 mutations in myotonia congenita: variable patterns of inheritance. Muscle Nerve. Epub ahead of print

  16. Zhang J, Bendahhou S, Sanguinetti MC, Ptàček LJ (2000) Functional consequences of chloride channel gene (CLCN1) mutations causing myotonia congenital. Neurology 54:937–942

    Article  CAS  PubMed  Google Scholar 

  17. Chen L, Schaerer M, Lu ZH, Lang D, Joncourt F, Weis J, Fritschi J, Kappeler L, Gallati S, Sigel E, Burgunder JM (2004) Exon 17 skipping in CLCN1 leads to recessive myotonia congenita. Muscle Nerve 29:670–676

    Article  PubMed  Google Scholar 

  18. Licatalosi DD, Darnell RB (2006) Splicing regulation in neurologic disease. Neuron 52:93–101

    Article  CAS  PubMed  Google Scholar 

  19. Singh RK, Cooper TA (2012) Pre-mRNA splicing in disease and therapeutics. Trends Mol Med 18:472–482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Karam R, Wengrod J, Gardner LB, Wilkinson MF (2013) Regulation of nonsense-mediated mRNA decay: implications for physiology and disease. Biochim Biophys Acta 1829:624–633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Feng D, Xie J (2013) Aberrant splicing in neurological diseases. Wiley Interdiscip Rev RNA 4(6):631–649

    Google Scholar 

  22. Fan X, Tang L (2013) Aberrant and alternative splicing in skeletal system disease. Gene 528(1):21–26

    Google Scholar 

  23. Baralle D, Baralle M (2013) Splicing in action: assessing disease causing sequence changes. J Med Genet 42:737–748

    Article  Google Scholar 

  24. Cooper TA (2005) Use of minigene systems to dissect alternative splicing elements. Methods 37:331–340

    Article  CAS  PubMed  Google Scholar 

  25. Sloan Brown K, George AL Jr (1997) Inheritance of three distinct muscle chloride channel gene (CLCN1) mutations in a single recessive myotonia congenita family. Neurology 48:542–543

    Article  CAS  PubMed  Google Scholar 

  26. Trip J, Drost G, Verbove DJ, van der Kooi AJ, Kuks JB, Notermans NC, Verschuuren JJ, de Visser M, van Engelen BG, Faber CG, Ginjaar IB (2008) In tandem analysis of CLCN1 and SCN4A greatly enhances mutation detection in families with non-dystrophic myotonia. Eur J Hum Genet 16:921–929

    Article  CAS  PubMed  Google Scholar 

  27. McKay OM, Krishnan AV, Davis M, Kiernan MC (2006) Activity-induced weakness in recessive myotonia congenita with a novel (696+1G>A) mutation. Clin Neurophysiol 117:2064–2068

    Article  CAS  PubMed  Google Scholar 

  28. Brugnoni R, Galantini S, Confalonieri P, Balestrini MR, Cornelio F, Mantegazza R (1999) Identification of three novel mutations in the major human skeletal muscle chloride channel gene (CLCN1), causing myotonia congenita. Hum Mutat 14:447

    Article  CAS  PubMed  Google Scholar 

  29. Duprè N, Chrestian N, Bouchard JP, Rossignol E, Brunet D, Sternberg D et al (2009) Clinical, electrophysiologic, and genetic study of non-dystrophic myotonia in French–Canadians. Neuromuscul Disord 19:330–334

    Article  PubMed  Google Scholar 

  30. Sun C, Tranebjaerg L, Torbergsen T, Holmgren G, Van Ghelue M (2001) Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia. Eur J Hum Genet 9:903–909

    Article  CAS  PubMed  Google Scholar 

  31. Sangiuolo F, Botta A, Mesoraca A, Servidei S, Merlini L, Fratta G, Novelli G, Dallapiccola B (1998) Identification of five new mutations and three novel polymorphisms in the muscle chloride channel gene (CLCN1) in 20 Italian patients with dominant and recessive myotonia congenita. Hum Mutat 11:331–332

    Article  CAS  PubMed  Google Scholar 

  32. Desaphy JF, Gramegna G, Altamura C, Dinardo MM, Imbrici P, George AL Jr, Modoni A, Lomonaco M, Camerino DC (2013) Functional characterization of ClC-1 mutations from patients affected by recessive myotonia congenita presenting with different clinical phenotypes. Exp Neurol 248:530–540

    Google Scholar 

  33. Malik M, Simpson JF, Parikh I, Wilfred BR, Fardo DW, Nelson PT, Estus S (2013) CD33 Alzheimer’s risk-altering polymorphism, CD33 expression, and exon 2 splicing. J Neurosci 33:13320–13325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Huang H, Zhao P, Arimatsu K, Tabeta K, Yamazaki K, Krieg L, Fu E, Zhang T, Du X (2013) A deep intronic mutation in the ankyrin-1 gene causes diminished protein expression resulting in hemolytic anemia in mice. G3 (Bethesda) 3:1687–1695

    Article  Google Scholar 

  35. Szafranski P, Yang Y, Nelson MU, Bizzarro MJ, Morotti RA, Langston C, Stankiewicz P (2013) Novel FOXF1 deep intronic deletion causes lethal lung developmental disorder, alveolar capillary dysplasia with misalignment of pulmonary veins. Hum Mutat 34:467–471

    Article  Google Scholar 

  36. Bonnet C, Krieger S, Vezain M, Rousselin A, Tournier I, Martins A, Berthet P, Chevrier A, Dugast C, Layet V, Rossi A, Lidereau R, Frébourg T, Hardouin A, Tosi M (2008) Screening BRCA1 and BRCA2 unclassified variants for splicing mutations using reverse transcription PCR on patient RNA and an ex vivo assay based on a splicing reporter minigene. J Med Genet 45:438–446

    Article  CAS  PubMed  Google Scholar 

  37. Zou F, Gopalraj RK, Lok J, Zhu H, Ling IF, Simpson JF, Tucker HM, Kelly JF, Younkin SG, Dickson DW, Petersen RC, Graff-Radford NR, Bennett DA, Crook JE, Younkin SG, Estus S (2008) Sex-dependent association of a common low-density lipoprotein receptor polymorphism with RNA splicing efficiency in the brain and Alzheimer’s disease. Hum Mol Genet 17:929–935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Nozu K, Iijima K, Kawai K, Nozu Y, Nishida A, Takeshima Y, Fu XJ, Hashimura Y, Kaito H, Nakanishi K, Yoshikawa N, Matsuo M (2009) In vivo and in vitro splicing assay of SLC12A1 in an antenatal salt-losing tubulopathy patient with an intronic mutation. Hum Genet 126:533–538

    Article  CAS  PubMed  Google Scholar 

  39. Kuroyanagi H, Ohno G, Sakane H, Maruoka H, Hagiwara M (2010) Visualization and genetic analysis of alternative splicing regulation in vivo using fluorescence reporters in transgenic Caenorhabditis elegans. Nat Protoc 5:1495–1517

    Article  CAS  PubMed  Google Scholar 

  40. Xiao Q, Ford AL, Xu J, Yan P, Lee KY, Gonzales E, West T, Holtzman DM, Lee JM (2012) Bcl-x pre-mRNA splicing regulates brain injury after neonatal hypoxia-ischemia. J Neurosci 32:13587–13596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. O’Brien JE, Drews VL, Jones JM, Dugas JC, Barres BA, Meisler MH (2012) Rbfox proteins regulate alternative splicing of neuronal sodium channel SCN8A. Mol Cell Neurosci 49:120–126

    Article  PubMed Central  PubMed  Google Scholar 

  42. Aissat A, de Becdelièvre A, Golmard L, Vasseur C, Costa C, Chaoui A, Martin N, Costes B, Goossens M, Girodon E, Fanen P, Hinzpeter A (2013) Combined computational-experimental analyses of CFTR exon strength uncover predictability of exon-skipping level. Hum Mutat 34:873–881

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the O.N.G. Foundation “Associazione Amici del Centro Dino Ferrari” for financial support.

Conflict of interests

All authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Lucchiari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulzi, G., Sansone, V.A., Magri, F. et al. In vitro analysis of splice site mutations in the CLCN1 gene using the minigene assay. Mol Biol Rep 41, 2865–2874 (2014). https://doi.org/10.1007/s11033-014-3142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3142-5

Keywords

Navigation