Skip to main content
Log in

A1E inhibits proliferation and induces apoptosis in NCI-H460 lung cancer cells via extrinsic and intrinsic pathways

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

It has been reported that extracts from Asian traditional/medical herbs possess therapeutic agents against cancers, metabolic diseases, inflammatory diseases, and other intractable diseases. In this study, we assessed the molecular mechanisms involved in the anticancer effects of A1E, the extract of Korean medicinal herbs. We examined the role of the cytotoxic and apoptotic pathways in the cancer chemopreventive activity in non-small-cell lung cancer (NSCLC) cell lines NCI-H460 and NCI-H1299. A1E inhibited the proliferation of NCI-H460 more efficiently than NCI-H1299 (p53−/−) cells. The apoptosis was detected by nuclear morphological changes, annexin V-FITC/PI staining, cell cycle analysis, western blot, RT-PCR, and measurement of mitochondrial membrane potential. A1E induced cellular morphological changes and nuclear condensation at 24 h in a dose-dependent manner. A1E also perturbed cell cycle progression at the sub-G1 stage and altered cell cycle regulatory factors in NCI-H460 cells. Furthermore, A1E inhibited the PI3K/Akt and NF-κB survival pathways, and it activated apoptotic intrinsic and extrinsic pathways. A1E increased the expression levels of members of the extrinsic death receptor complex FasL and FADD. In addition, A1E treatment induced cleavage of caspase-8, caspase-9, caspase-3, and poly ADP-ribose polymerase (PARP), whereas the expression levels of Bcl-2 and Bcl-xl were downregulated. A1E induced mitochondrial membrane potential collapse and cytochrome C release. Our results suggest that A1E induces apoptosis via activation of both extrinsic and intrinsic pathways and inhibition of PI3K/Akt survival signaling pathways in NCI-H460 cells. In conclusion, these data demonstrate the potential of A1E as a novel chemotherapeutic agent in NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

NSCLC:

Non-small cell lung cancer

PARP:

Poly (ADP-ribose) polymerase

PI:

Propidium iodide

PI3K:

Phosphatidylinositol 3-kinase

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

HRP:

Horseradish peroxidase

References

  1. Jemal A, Siegel R, Xu J et al (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Lee ER, Kang YJ, Choi HY et al (2007) Induction of apoptotic cell death by synthetic naringenin derivatives in human lung epithelial carcinoma A549 cells. Biol Pharm Bull 30:2394–2398

    Article  PubMed  CAS  Google Scholar 

  3. Smith HO, Tiffany MF, Qualls CR et al (2000) The rising incidence of adenocarcinoma relative to squamous cell carcinoma of the uterine cervix in the United States–a 24-year population-based study. Gynecol Oncol 78:97–105

    Article  PubMed  CAS  Google Scholar 

  4. Kandaswami C, Lee LT, Lee PP et al (2005) The antitumor activities of flavonoids. In Vivo 19:895–909

    PubMed  Google Scholar 

  5. Butt MS, Sultan MT (2009) Green tea: nature’s defense against malignancies. Crit Rev Food Sci Nutr 49:463–473

    Article  PubMed  CAS  Google Scholar 

  6. Newman DJ, Cragg GM, Snader KM (2000) The influence of natural products upon drug discovery. Nat Prod Rep 17:215–234

    Article  PubMed  CAS  Google Scholar 

  7. Cho SH, Chung KS, Choi JH et al (2009) Compound K, a metabolite of ginseng saponin, induces apoptosis via caspase-8-dependent pathway in HL-60 human leukemia cells. BMC Cancer 9:449

    Article  PubMed  Google Scholar 

  8. Yang ZG, Sun HX, Ye YP (2006) Ginsenoside Rd from Panax notoginseng is cytotoxic towards HeLa cancer cells and induces apoptosis. Chem Biodiversity 3:187–197

    Article  CAS  Google Scholar 

  9. Park HS, Park KI, Lee DH et al (2012) Polyphenolic extract isolated from Korean Lonicera japonica Thunb. induce G2/M cell cycle arrest and apoptosis in HepG2 cells: involvements of PI3 K/Akt and MAPKs. Food Chem Toxicol 50:2407–2416

    Article  PubMed  CAS  Google Scholar 

  10. Nagata S (2000) Apoptotic DNA fragmentation. Exp Cell Res 256:12–18

    Article  PubMed  CAS  Google Scholar 

  11. Susin SA, Daugas E, Ravagnan L et al (2000) Two distinct pathways leading to nuclear apoptosis. J Exp Med 192:571–580

    Article  PubMed  CAS  Google Scholar 

  12. Wajant H (2002) The Fas signaling pathway: more than a paradigm. Science 296:1635–1636

    Article  PubMed  CAS  Google Scholar 

  13. Dejean LM, Martinez-Caballero S, Manon S et al (2006) Regulation of the mitochondrial apoptosis-induced channel, MAC, by BCL-2 family proteins. Biochim Biophys Acta 1762:191–201

    Article  PubMed  CAS  Google Scholar 

  14. Morgensztern D, McLeod HL (2005) PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 16:797–803

    Article  PubMed  CAS  Google Scholar 

  15. Faissner A, Heck N, Dobbertin A et al (2006) DSD-1-Proteoglycan/Phosphacan and receptor protein tyrosine phosphatase-beta isoforms during development and regeneration of neural tissues. Adv Exp Med Biol 557:25–53

    Article  PubMed  CAS  Google Scholar 

  16. Alvarez M, Roman E, Santos ES et al (2007) New targets for non-small-cell lung cancer therapy. Expert Rev Anticancer Ther 7:1423–1437

    Article  PubMed  CAS  Google Scholar 

  17. Alberts B (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  18. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  19. Smiley ST, Reers M, Mottola-Hartshorn C et al (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci U S A 88:3671–3675

    Article  PubMed  CAS  Google Scholar 

  20. Fabbro M, Savage K, Hobson K et al (2004) BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage. J Biol Chem 279:31251–31258

    Article  PubMed  CAS  Google Scholar 

  21. Frolov MV, Dyson NJ (2004) Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J Cell Sci 117:2173–2181

    Article  PubMed  CAS  Google Scholar 

  22. Yu SW, Andrabi SA, Wang H et al (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci U S A 103:18314–18319

    Article  PubMed  CAS  Google Scholar 

  23. Yuan S, Yu X, Topf M et al (2010) Structure of an apoptosome-procaspase-9 CARD complex. Structure 18:571–583

    Article  PubMed  CAS  Google Scholar 

  24. Acehan D, Jiang X, Morgan DG et al (2002) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9:423–432

    Article  PubMed  CAS  Google Scholar 

  25. Ji Y, Rao Z, Cui J et al (2012) Ginsenosides extracted from nanoscale Chinese white ginseng enhances anticancer effect. J Nanosci Nanotechnol 12:6163–6167

    Article  PubMed  CAS  Google Scholar 

  26. Lemieszek MK, Langner E, Kaczor J et al (2011) Anticancer effects of fraction isolated from fruiting bodies of Chaga medicinal mushroom, Inonotus obliquus (Pers.:Fr.) Pilat (Aphyllophoromycetideae): in vitro studies. Int J Med Mushrooms 13:131–143

    Article  PubMed  Google Scholar 

  27. Watanabe S, Kitade Y, Masaki T et al (2001) Effects of lycopene and Sho-saiko-to on hepatocarcinogenesis in a rat model of spontaneous liver cancer. Nutr Cancer 39:96–101

    Article  PubMed  CAS  Google Scholar 

  28. Yang HL, Chen SC, Chen CS et al (2008) Alpinia pricei rhizome extracts induce apoptosis of human carcinoma KB cells via a mitochondria-dependent apoptotic pathway. Food Chem Toxicol 46:3318–3324

    Article  PubMed  CAS  Google Scholar 

  29. Hahm ER, Park S, Yang CH (2003) 7, 8-dihydroxyflavanone as an inhibitor for Jun-Fos-DNA complex formation and its cytotoxic effect on cultured human cancer cells. Nat Prod Res 17:431–436

    Article  PubMed  CAS  Google Scholar 

  30. Kwon HK, Hwang JS, So JS et al (2010) Cinnamon extract induces tumor cell death through inhibition of NFkappaB and AP1. BMC Cancer 10:392

    Article  PubMed  Google Scholar 

  31. Zhao FW, Luo M, Wang YH et al (2010) A piperidine alkaloid and limonoids from Arisaema decipiens, a traditional antitumor herb used by the Dong people. Arch Pharm Res 33:1735–1739

    Article  PubMed  CAS  Google Scholar 

  32. Youn MJ, Kim JK, Park SY et al (2008) Chaga mushroom (Inonotus obliquus) induces G0/G1 arrest and apoptosis in human hepatoma HepG2 cells. World J Gastroenterol 14:511–517

    Article  PubMed  Google Scholar 

  33. Latt SA, Stetten G (1976) Spectral studies on 33258 Hoechst and related bisbenzimidazole dyes useful for fluorescent detection of deoxyribonucleic acid synthesis. J Histochem Cytochem 24:24–33

    Article  PubMed  CAS  Google Scholar 

  34. Vermes I, Haanen C, Steffens-Nakken H et al (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51

    Article  PubMed  CAS  Google Scholar 

  35. Moore A, Donahue CJ, Bauer KD et al (1998) Simultaneous measurement of cell cycle and apoptotic cell death. Methods Cell Biol 57:265–278

    Article  PubMed  CAS  Google Scholar 

  36. Franke TF, Kaplan DR, Cantley LC et al (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275:665–668

    Article  PubMed  CAS  Google Scholar 

  37. Szliszka E, Zydowicz G, Janoszka B et al (2011) Ethanolic extract of Brazilian green propolis sensitizes prostate cancer cells to TRAIL-induced apoptosis. Int J Oncol 38:941–953

    PubMed  CAS  Google Scholar 

  38. Jacobs MD, Harrison SC (1998) Structure of an IkappaBalpha/NF-kappaB complex. Cell 95:749–758

    Article  PubMed  CAS  Google Scholar 

  39. Gururajan M, Dasu T, Shahidain S et al (2007) Spleen tyrosine kinase (Syk), a novel target of curcumin, is required for B lymphoma growth. J Immunol 178:111–121

    PubMed  CAS  Google Scholar 

  40. Hussain AR, Al-Rasheed M, Manogaran PS et al (2006) Curcumin induces apoptosis via inhibition of PI3′-kinase/AKT pathway in acute T cell leukemias. Apoptosis 11:245–254

    Article  PubMed  CAS  Google Scholar 

  41. Deeb D, Jiang H, Gao X et al (2004) Curcumin sensitizes prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L by inhibiting nuclear factor-kappaB through suppression of IkappaBalpha phosphorylation. Mol Cancer Ther 3:803–812

    PubMed  CAS  Google Scholar 

  42. May P, May E (1999) Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 18:7621–7636

    Article  PubMed  CAS  Google Scholar 

  43. Karna P, Gundala SR, Gupta MV et al (2011) Polyphenol-rich sweet potato greens extract inhibits proliferation and induces apoptosis in prostate cancer cells in vitro and in vivo. Carcinogenesis 32:1872–1880

    Article  PubMed  CAS  Google Scholar 

  44. Harper JW, Adami GR, Wei N et al (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    Article  PubMed  CAS  Google Scholar 

  45. Polyak K, Lee MH, Erdjument-Bromage H et al (1994) Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78:59–66

    Article  PubMed  CAS  Google Scholar 

  46. Evans T, Rosenthal ET, Youngblom J et al (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389–396

    Article  PubMed  CAS  Google Scholar 

  47. Fulda S, Debatin KM (2005) Resveratrol-mediated sensitisation to TRAIL-induced apoptosis depends on death receptor and mitochondrial signalling. Eur J Cancer 41:786–798

    Article  PubMed  CAS  Google Scholar 

  48. Bucur O, Ray S, Bucur MC et al (2006) APO2 ligand/tumor necrosis factor-related apoptosis-inducing ligand in prostate cancer therapy. Front Biosci 11:1549–1568

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant (B110053) from the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea. D.Y. was partially supported by a program (2012-0006686) from the National Research Foundation of Korea (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do-Young Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bak, Y., Ham, S., Baatartsogt, O. et al. A1E inhibits proliferation and induces apoptosis in NCI-H460 lung cancer cells via extrinsic and intrinsic pathways. Mol Biol Rep 40, 4507–4519 (2013). https://doi.org/10.1007/s11033-013-2544-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2544-0

Keywords

Navigation