Skip to main content

Advertisement

Log in

Gene expression and pathologic response to neoadjuvant chemotherapy in breast cancer

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Pathologic complete response after neoadjuvant systemic treatment appears to be a valid surrogate for better overall survival in breast cancer patients. Currently, together with standard clinicopathologic assessment, novel molecular biomarkers are being exhaustively tested in order to look into the heterogeneity of breast cancer. The aim of our study was to examine an association between 23-gene real-time-PCR expression assay including ABCB1, ABCC1, BAX, BBC3, BCL2, CASP3, CYP2D6, ERCC1, FOXC1, GAPDH, IGF1R, IRF1, MAP2, MAPK 8, MAPK9, MKI67, MMP9, NCOA3, PARP1, PIK3CA, TGFB3, TOP2A, and YWHAZ receptor status of breast cancer core biopsies sampled before neoadjuvant chemotherapy (anthracycline and taxanes) and pathologic response. Core-needle biopsies were collected from 42 female patients with inoperable locally advanced breast cancer or resectable tumors suitable for downstaging, before any treatment. Expressions of 23 genes were determined by means of TagMan low density arrays. Analysis of variance was used to select genes with discriminatory potential between receptor subtypes. We introduced a correction for false discovery rates (presented as q values) due to multiple hypothesis testing. Statistical analysis showed that seven genes out of a 23-gene real-time-PCR expression assay differed significantly in relation to pathologic response regardless of breast cancer subtypes. Among these genes, we identified: BAX (p = 0.0146), CYP2D6 (p = 0.0063), ERCC1 (p = 0.0231), FOXC1 (p = 0.0048), IRF1 (p = 0.0022), MAP2 (p = 0.0011), and MKI67 (p = 0.0332). The assessment of core biopsy gene profiles and receptor-based subtypes, before neoadjuvant therapy seems to predict response or resistance and to define new signaling pathways to provide more powerful classifiers in breast cancer, hence the need for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Von Minckwitz G, Loibl S, Maisch A, Untch M (2011) Lessons from the neoadjuvant setting on how best to choose adjuvant therapies. Breast 20(Suppl 3):S142–S145

    Article  Google Scholar 

  2. Marchio C, Sapino A (2011) The pathologic complete response open question in primary therapy. J Natl Cancer Inst Monogr 43:86–90

    Article  Google Scholar 

  3. Arun BK, Dhinghra K, Valero V, Kau SW, Broglio K et al (2011) Phase III randomized trial of dose intensive neoadjuvant chemotherapy with or without G-CSF in locally advanced breast cancer: long-term results. Oncologist 16:1527–1534

    Article  PubMed  CAS  Google Scholar 

  4. Ena G (2011) Neoadjuvant therapy in breast cancer. Rev Med Brux 32:243–246

    PubMed  CAS  Google Scholar 

  5. Vaklavas C, Forero-Tores A (2011) How do I treat triple negative disease? Curr Treat Options Oncol 12:369–388

    Article  PubMed  Google Scholar 

  6. Gonzalez-Angulo AM, Hennessy BT, Meric-Bernstam F, Sahin A, Liu W et al (2011) Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer. Clin Proteomics 8(1):11

    Article  PubMed  Google Scholar 

  7. http://www.ncbi.nlm.nih.gov. Accessed 27 June 2010

  8. http://www.genecards.org/cgi-bin/carddisp.pl. Accessed 13 Nov 2011

  9. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360(8):790–800

    Article  PubMed  CAS  Google Scholar 

  10. Hoeflich K (2011) PI3 K + MEK inhibition. Ann Oncol 22(suppl 2):ii23. doi:10.1093/annonc/mdr077

    Google Scholar 

  11. Fumagalli D, Desmedt C, Ignatiadis M, Loi S, Piccart M, Sotiriou C (2011) Gene profiling assay and application: the predictive role in primary therapy. J Natl Cancer Inst Monogr 43:124–127

    Article  CAS  Google Scholar 

  12. Ray PS, Wang J, Qu Y, Sim MS, Shamonki JM et al (2010) FOXC1 is a potential prognostic biomarker with functional significance in basal- like breast cancer. Cancer Res 70(10):3870–3876. doi:10.1158/0008-5472

    Article  PubMed  CAS  Google Scholar 

  13. Ray PS, Bagaria SP, Wang J, Shamonki JM, Ye X et al (2011) Basal- like breast cancer defined by FOXC1 expression offers superior prognostic value: a retrospective immunohistochemical study. Ann Surg Oncol 18:3839–3847

    Article  PubMed  Google Scholar 

  14. Rody A, Holtrich U, Pusztai L, Liedtke C, Gaetje R et al (2009) T-cell metagene predicts a favorable prognosis in estrogen receptor- negative and HER2 positive breast cancers. Breast Cancer Res 11:R15

    Article  PubMed  Google Scholar 

  15. Cavalli LR, Riqqins RB, Wang A, Clarke R, Haddad BR (2010) Frequent loss of heterozygosity at the interferon regulatory factor -1 gene locus in breast cancer. Breast Cancer Res Treat 121:227–231

    Article  PubMed  Google Scholar 

  16. Teschendorff AE, Gomez S, Arenas A, El-Ashry D, Schmidt M et al (2010) Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules. BMC 10:604

    Google Scholar 

  17. Kim D, Jung W, Koo JS (2011) The expression of ERCC1, RRM1, and BRCA1 in breast cancer according to the immunohistochemical phenotypes. J Korean Med Sci 26:352–359

    Article  PubMed  Google Scholar 

  18. Chen X, Wu J, Lu H, Huang O, Shen K (2011) Measuring β-tubulin III, Bcl-2 and ERCC1 improves pathological complete remission predictive accuracy in breast cancer. Cancer Sci 103(2):262–268. doi:10.1111/j.1349-7006.2011.02135.x

    Article  PubMed  Google Scholar 

  19. Shao YY, Kuo KT, Hu FC, Lu JS, Huang CS et al (2010) Predictive and prognostic values of tau and ERCC1 in advanced breast cancer patients treated with paclitaxel and cisplatin. Jpn J Clin Oncol 40:286–293

    Article  PubMed  Google Scholar 

  20. Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z et al (2010) Efficacy of neoadjuvant cis-platin in triple negative breast cancer. J Clin Oncol 28:1145–1153

    Article  PubMed  CAS  Google Scholar 

  21. Iwamoto T, Pusztai L (2010) Predicting prognosis of breast cancer with gene signatures: are we lost in a sea of data? Genome Med 2:81

    PubMed  Google Scholar 

  22. Tordai A, Wang J, Andre F, Liedtke C, Yan K et al (2008) Evaluation of biological pathways involved in chemotherapy response in breast cancer. Breast Cancer Res 10(2):R37. doi:10.1186/bcr2088

    Article  PubMed  Google Scholar 

  23. Fan C, Prat A, Parker JS, Liu Y, Carey A et al (2011) Building prognostic models for breast cancer patients using clinical variables and hundreds of gene expression signatures. BMC Medical Genomics 4:3

    Article  PubMed  Google Scholar 

  24. Nielsen TO, Parker JS, Leung S, Voduc D, Ebbert M et al (2011) A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor positive breast cancer. Clin Cancer Res 16:5222–5232

    Article  Google Scholar 

  25. Froehlich H (2011) Network based consensus gene signatures for biomarker discovery in breast cancer. Plos one 6(10):e25364. doi:10.1371/journal.pone.0025364

    Article  CAS  Google Scholar 

  26. Gabrovska PN, Smith RA, Tiang T, Weinstein SR, Haupt LM, Griffiths LR (2011) Development of an eight gene expression profile implicating human breast tumours of all grades. Mol Biol Rep (in press)

Download references

Acknowledgment

This work was supported by the grant of the Ministry of Science, Poland, NN402350838.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Kolacinska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolacinska, A., Fendler, W., Szemraj, J. et al. Gene expression and pathologic response to neoadjuvant chemotherapy in breast cancer. Mol Biol Rep 39, 7435–7441 (2012). https://doi.org/10.1007/s11033-012-1576-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1576-1

Keywords

Navigation