Skip to main content

Advertisement

Log in

Alpha-1-antitrypsin in serum exosomes and pericardial fluid exosomes is associated with severity of rheumatic heart disease

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Rheumatic heart disease (RHD) is an autoimmune sequel of pharyngitis and rheumatic fever that leads to permanent heart valve damage, especially the mitral valves. The mitral valves, which are responsible for the binding of auto-antibodies during immune response generation, lead to valve scarring and eventually valves dysfunction. Recently, exosomes (EXOs), the nano-sized vesicles, which range in size from 30 to 150 nm, are reported in various cardiovascular physiological and pathological processes. These vesicles are found in several body fluids such as plasma, serum, and also in cell culture media. Exosomal cargo contains proteins, which are taken up by the recipient cells and modulate the cellular characteristics. The role of exosomal proteins in RHD is still obscure. Hence, the present study has been designed to unveil the exosomal proteins in disease severity during RHD. In this study, the exosomes were isolated from biological fluids (serum and pericardial fluid) of RHD patients as well as from their respective controls. Protein profiling of these isolated exosomes revealed that alpha-1 antitrypsin is up-regulated in the biological fluids of RHD patients. The enhanced levels of exosomal alpha-1 antitrypsin, were further, validated in biological samples and mitral valve tissues of RHD patients, to correlate with the disease severity. These findings suggest an association of increased levels of exosomal alpha-1 antitrypsin with the RHD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Yes.

Code availability

None.

References

  1. Guilherme L, Cury P, Demarchi LMF, Coelho VN, Abel LC, Lopez AP et al (2004) Rheumatic heart disease proinflammatory cytokines play a role in the progression and maintenance of valvular lesions. Am J Pathol 165:1583–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Watkins DA, Johnson CO, Colquhoun SM, Karthikeyan G, Beaton A, Bukhman G et al (2017) Global, Regional, and National Burden of Rheumatic Heart Disease, 1990–2015. N Engl J Med 377:713–722

    Article  PubMed  Google Scholar 

  3. Cunningham MW (2014) Rheumatic fever, autoimmunity and molecular mimicry: the streptococcal connection. Int Rev Immunol 33:314–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sarkar S, Chopra S, Rohit MK, Banerjee D, Chakraborti A et al (2016) Vitamin D regulates the production of vascular endothelial growth factor: a triggering cause in the pathogenesis of rheumatic heart disease. Med Hypotheses 95:62–66

    Article  CAS  PubMed  Google Scholar 

  5. Dinkla K, Talay SR, Morgelin M, Graham RMA, Rohde M, Nitsche-Schmitz DP et al (2009) Crucial role of the CB3-region of collagen IV in PARF induced acute rheumatic fever. PLoS ONE 4(3):e4666

    Article  PubMed  PubMed Central  Google Scholar 

  6. Quinn A, Kosanke S, Fischette VA (2001) Induction of autoimmune valvular heart disease by recombinant streptococcal M protein. Infect Immunity 69:4072–4078

    Article  CAS  Google Scholar 

  7. Martins CO, Demarchi L, Ferreira FM, Pomerantzeff PA, Brandao C, Sampaio RO et al (2017) Rheumatic heart disease and myxomatous degeneration: differences and similarities of valve damage resulting from autoimmune reactions and matrix disorganization. PLoS ONE 12:e0170191

    Article  PubMed  PubMed Central  Google Scholar 

  8. Guilherme L, Kalil J (2013) Rheumatic heart disease: molecules involved in valve tissue inflammation leading to the autoimmune process and anti-S. pyogenes vaccine. Front Immunol 4:352

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mukherjee S, Jagadeeshaprasad MG, Banerjee T, Ghosh SK, Biswas M, Dutta S et al (2014) Proteomic analysis of human plasma in chronic rheumatic mitral stenosis reveals proteins involved in the complement and coagulation cascade. Clin Proteomics 11:35

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gao G, Xuan C, Yang Q, Liu XC, Liu ZG, He GW (2013) Identification of altered plasma proteins by proteomic study in valvular heart diseases and the potential clinical significance. PLoS ONE 8:e72111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li W, Zeng Z, Gui C, Zheng H, Huang W, Wei H, Gong D et al (2015) Proteomic analysis of mitral valve in Lewis rat with acute rheumatic heart disease. Int J Clin Exp Pathol 8:14151–14160

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stahl PD, Raposo G (2018) Exosomes and extracellular vesicles: the path forward. Essays Biochem 62:119–124

    Article  PubMed  Google Scholar 

  13. Luo Y, Huang L, Luo W, Ye S, Hu Q (2019) Genomic analysis of lncRNA and mRNA profiles in circulating exosomes of patients with rheumatic heart disease. Biol Open 8:bio045633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jung MK, Mun JY (2018) Sample preparation and imaging of exosomes by transmission electron microscopy. J Vis Exp 131:e56482

    Google Scholar 

  15. Walker JM. The Bicinchoninic Acid (BCA) Assay for protein quantitation. The Protein Protocols Handbook, pp 11–14

  16. Bringans S, Eriksen S, Kendrick T, Gopalakrishnakone P, Livk A, Lock R et al (2008) Proteomic analysis of the venom of Heterometrus longimanus (Asian black scorpion). Proteomics 8:1081–1096

    Article  CAS  PubMed  Google Scholar 

  17. Chen Y, Du Y, Tao J, Li W, Zhou Z et al (2018) Circulating exosomal miR-92b-5p is a promising diagnostic biomarker of heart failure with reduced ejection fraction patients hospitalized for acute heart failure. J Thorac Dis. https://doi.org/10.21037/jtd.2018.10.52

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fu S, Zhang Y, Li Y, Luo L, Zhao Y, Yao Y (2020) Extracellular vesicles in cardiovascular diseases. Cell Death Discov 6:68. https://doi.org/10.1038/s41420-020-00305-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qiao L, Hu S, Liu S, Zhang H, Ma H, Huang K et al (2019) MicroRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J Clin Invest 129:2237–2250. https://doi.org/10.1172/JCI123135

    Article  PubMed  PubMed Central  Google Scholar 

  20. Luo Y, Huang L, Luo W, Ye S, Hu Q (2019) Genomic analysis of lncRNA and mRNA profiles in circulating exosomes of patients with rheumatic heart disease. Biol Open 8:bio045633. https://doi.org/10.1242/bio.045633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen A, Wen J, Lu C, Lin B, Xian S, Huang F et al (2020) Inhibition of miR-155-5p attenuates the valvular damage induced by rheumatic heart disease. Int J Mol Med 45:429–440. https://doi.org/10.3892/ijmm.2019.4420

    Article  CAS  PubMed  Google Scholar 

  22. Beltrami C, Besnier M, Shantikumar S, Shearn AI, Rajakaruna C, Laftah A et al (2017) Human pericardial fluid contains exosomes enriched with cardiovascular-expressed microRNAs and promotes therapeutic angiogenesis. Mol Ther 25:679–693. https://doi.org/10.1016/j.ymthe.2016.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ben-Aicha S, Anwar M, Behmoaras J, Punjabi P, Emanueli C (2021) Human pericardial fluid exosomes regulate macrophage immunophenotype: new prospective for cardiovascular myocardium-epicardium crosstalk in coronary artery disease. Eur Heart J 42:3223. https://doi.org/10.1093/eurheartj/ehab724.3223

    Article  Google Scholar 

  24. Wettstein L, Weil T, Münch J (2021) Alpha-1 antitrypsin inhibits TMPRSS2 protease activity and SARS-CoV-2 infection. Nat Commun 12:1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Somayajulu GL, Reddy PP (1996) Serum alpha-1-antitrypsin in ischemia and rheumatic heart diseases. Indian J Pathol Microbiol 39:271–275

    CAS  PubMed  Google Scholar 

  26. Fae KC, Diefenbach da Silva D, Bilate AM, Tanaka AC, Pomerantzeff PM, Kiss MH et al (2008) PDIA3, HSPA5 and vimentin, proteins identified by 2-DE in the valvular tissue, are the target antigens of peripheral and heart infiltrating T cells from chronic rheumatic heart disease patients. J Autoimmun 31:136–41

    Article  CAS  PubMed  Google Scholar 

  27. Martins Cde O, Santos KS, Ferreira FM, Teixeira PC, Pomerantzeff PM, Brandão CM et al (2014) Distinct mitral valve proteomic profiles in rheumatic heart disease and myxomatous degeneration. Clin Med Insights Cardiol 8:79–86

    PubMed  Google Scholar 

  28. Davidson A (2014) Autoimmunity to vimentin and lupus nephritis. Arthritis Rheumatol 66(12):3251–3254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsikitis M, Galata Z, Mavroidis M, Psarras S, Capetanaki Y (2018) Intermediate filaments in cardiomyopathy. Biophys Rev 10:1007–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Delunardo F, Scalzi V, Capozzi A, Camerini S, Misasi R, Pierdominici M et al (2013) Streptococcal-vimentin cross-reactive antibodies induce microvascular cardiac endothelial proinflammatory phenotype in rheumatic heart disease. Clin Exp Immunol 173:419–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song S (2018) Alpha-1 antitrypsin therapy for autoimmune disorders. Chronic Obstr Pulm Dis 5(4):289–301

    PubMed  PubMed Central  Google Scholar 

  32. Sanders CL, Ponte A, Kueppers F (2018) The effects of inflammation on alpha 1 antitrypsin levels in a national screening cohort. COPD 15:10–16

    Article  PubMed  Google Scholar 

  33. Sifers RN (2010) Intracellular processing of alpha1-antitrypsin. Proc Am Thorac Soc 7:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van’t Wout EF, van Schadewijk A, Savage ND, Stolk J, Hiemstra PS (2012) α1-antitrypsin production by proinflammatory and antiinflammatory macrophages and dendritic cells. Am J Respir Cell Mol Biol 46:607–613

    Article  Google Scholar 

Download references

Funding

The funding was received by Indian Council of Medical Research (ICMR), Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

SSa designed the framework, performed the experimental work and drafted the manuscript. CCa## helped in bioinformatics analysis. SSa# analysed the data and contributed in drafting the manuscript. LSa### helped in drafting the manuscript. HSb provided the samples for the study. ACa* conceived the idea, designed the study and finalized the MS. The authors approved the final version of the manuscript.

Corresponding author

Correspondence to Anuradha Chakraborti.

Ethics declarations

Conflict of interest

None.

Compliance with Ethical Standards

Yes.

Ethical approval

Approval for the study was granted by Institutional Ethics Committee, Postgraduate Institute of Medical Education and Research, Chandigarh (INT/IEC/2017/1437; Date: 04.12.2017).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Sarkar, S., Choudhury, C. et al. Alpha-1-antitrypsin in serum exosomes and pericardial fluid exosomes is associated with severity of rheumatic heart disease. Mol Cell Biochem 478, 1383–1396 (2023). https://doi.org/10.1007/s11010-022-04595-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04595-x

Keywords

Navigation