Skip to main content
Log in

Experimental evidence for the therapeutic potential of tempol in the treatment of acute liver injury

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Oxidative stress is one of the mechanisms involved in the acute carbon tetrachloride (CCl4)-induced hepatotoxicity. Since 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, known as tempol, has powerful antioxidant properties, we investigated its potential hepatoprotective effects and the underlying mechanisms that may add further benefits for its clinical usefulness using an acute model of CCl4-induced hepatotoxicity. One hour after CCl4 induction of acute hepatotoxicity, mice were treated with a daily dose of 20 mg/kg/day tempol for 3 days. It was found that treatment of animals with tempol significantly negated the pathological changes in liver function parameters as well as histology induced by CCl4. In addition, tempol significantly ameliorated CCl4-induced lipid peroxidation and GSH depletion, and improved catalase activity. Furthermore, tempol alleviated the inflammation induced by CCl4 as indicated by reducing the liver expression level of nuclear factor-kappa B (NF-κB) and tumor necrosis factor-α (TNF-α). Finally, tempol significantly reduced expression level of the B-cell lymphoma-2 protein (Bcl-2) and active caspase-3 which are known markers of apoptosis. In conclusion, the present study provides important evidences for the promising hepatoprotective effects of tempol that can be explained by amelioration of oxidative stress mainly through replenishment of GSH, restoration of antioxidant enzyme activities, and reduction of lipid peroxides alongside its anti-inflammatory properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Constandinou C, Henderson N, Iredale JP (2005) Modeling liver fibrosis in rodents. Methods Mol Med 117:237–250

    PubMed  Google Scholar 

  2. Weiler-Normann C, Herkel J, Lohse AW (2007) Mouse models of liver fibrosis. Z fur Gastroenterol 45:43–50

    Article  CAS  Google Scholar 

  3. Stehbens WE (2003) Oxidative stress, toxic hepatitis, and antioxidants with particular emphasis on zinc. Exp Mol Pathol 75:265–276

    Article  CAS  PubMed  Google Scholar 

  4. Wu D, Zhai Q, Shi X (2006) Alcohol-induced oxidative stress and cell responses. J Gastroenterol Hepatol 21(Suppl 3):S26–S29

    Article  CAS  PubMed  Google Scholar 

  5. Sharma M, Gadang V, Jaeschke A (2012) Critical role for mixed-lineage kinase 3 in acetaminophen-induced hepatotoxicity. Mol Pharmacol 82:1001–1007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Weber LW, Boll M, Stampfl A (2003) Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol 33:105–136

    Article  CAS  PubMed  Google Scholar 

  7. Pantano C, Reynaert NL, van der Vliet A et al (2006) Redox-sensitive kinases of the nuclear factor-kappaB signaling pathway. Antioxid Redox Signal 8:1791–1806

    Article  CAS  PubMed  Google Scholar 

  8. Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280–288

    Article  CAS  PubMed  Google Scholar 

  9. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505

    Article  CAS  PubMed  Google Scholar 

  10. Heyninck K, Wullaert A, Beyaert R (2003) Nuclear factor-kappa B plays a central role in tumour necrosis factor-mediated liver disease. Biochem Pharmacol 66:1409–1415

    Article  CAS  PubMed  Google Scholar 

  11. Demirel U, Yalniz M, Aygun C et al (2012) Allopurinol ameliorates thioacetamide-induced acute liver failure by regulating cellular redox-sensitive transcription factors in rats. Inflammation 35:1549–1557

    Article  CAS  PubMed  Google Scholar 

  12. Malhi H, Gores GJ, Lemasters JJ (2006) Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology 43:S31–S44

    Article  CAS  PubMed  Google Scholar 

  13. Sun AY, Ingelman-Sundberg M, Neve E et al (2001) Ethanol and oxidative stress. Alcohol Clin Exp Res 25:237S–243S

    Article  CAS  PubMed  Google Scholar 

  14. Waris G, Tardif KD, Siddiqui A (2002) Endoplasmic reticulum (ER) stress: hepatitis C virus induces an ER-nucleus signal transduction pathway and activates NF-kappaB and STAT-3. Biochem Pharmacol 64:1425–1430

    Article  CAS  PubMed  Google Scholar 

  15. Ding WX, Yin XM (2004) Dissection of the multiple mechanisms of TNF-alpha-induced apoptosis in liver injury. J Cell Mol Med 8:445–454

    Article  CAS  PubMed  Google Scholar 

  16. Wilcox CS, Pearlman A (2008) Chemistry and antihypertensive effects of tempol and other nitroxides. Pharmacol Rev 60:418–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Wilcox CS (2010) Effects of tempol and redox-cycling nitroxides in models of oxidative stress. Pharmacol Ther 126:119–145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Karmeli F, Eliakim R, Okon E et al (1995) A stable nitroxide radical effectively decreases mucosal damage in experimental colitis. Gut 37:386–393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Mitchell JB, DeGraff W, Kaufman D et al (1991) Inhibition of oxygen-dependent radiation-induced damage by the nitroxide superoxide dismutase mimic, tempol. Arch Biochem Biophys 289:62–70

    Article  CAS  PubMed  Google Scholar 

  20. Gelvan D, Saltman P, Powell SR (1991) Cardiac reperfusion damage prevented by a nitroxide free radical. Proc Natl Acad Sci USA 88:4680–4684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Luo Z, Chen Y, Chen S et al (2009) Comparison of inhibitors of superoxide generation in vascular smooth muscle cells. Br J Pharmacol 157:935–943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Garcia-Caldero H, Rodriguez-Vilarrupla A, Gracia-Sancho J et al (2010) Tempol administration, a superoxide dismutase mimetic, reduces hepatic vascular resistance and portal pressure in cirrhotic rats. J Hepatol 54:660–665

    Article  PubMed  Google Scholar 

  23. Silva-Gomes S, Santos AG, Caldas C, Silva CM, Neves JV, Lopes J, Carneiro F, Rodrigues PN, Duarte TL (2014) Transcription factor NRF2 protects mice against dietary iron-induced liver injury by preventing hepatocytic cell death. J Hepatol 60(2):354–361

    Article  CAS  PubMed  Google Scholar 

  24. Hewawasam RP, Jayatilaka KA, Pathirana C et al (2003) Protective effect of Asteracantha longifolia extract in mouse liver injury induced by carbon tetrachloride and paracetamol. J Pharm Pharmacol 55:1413–1418

    Article  CAS  PubMed  Google Scholar 

  25. Sepodes B, Maio R, Pinto R et al (2004) Tempol, an intracellular free radical scavenger, reduces liver injury in hepatic ischemia-reperfusion in the rat. Transplant Proc 36:849–853

    Article  CAS  PubMed  Google Scholar 

  26. Paxian M, Bauer I, Rensing H et al (2003) Recovery of hepatocellular ATP and “pericentral apoptosis” after hemorrhage and resuscitation. FASEB J 17:993–1002

    Article  CAS  PubMed  Google Scholar 

  27. Taye A, Abouzied MM, Mohafez OM (2013) Tempol ameliorates cardiac fibrosis in streptozotocin-induced diabetic rats: role of oxidative stress in diabetic cardiomyopathy. Naunyn-Schmiedeberg’s Arch Pharmacol 386:1071–1080

    Article  CAS  Google Scholar 

  28. Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    CAS  PubMed  Google Scholar 

  29. Merino RA, Lalive J, Parga GL (1968) Critical analysis of bilirubinemia and diagnostic value of direct bilirubin determination by the Malloy-Evelyn method. Rev Med Chil 96:794–798

    CAS  PubMed  Google Scholar 

  30. Yoden K, Iio T (1989) Determination of thiobarbituric acid-reactive substances in oxidized lipids by high-performance liquid chromatography with a postcolumn reaction system. Anal Biochem 182:116–120

    Article  CAS  PubMed  Google Scholar 

  31. Rabie EM, Heeba GH, Abouzied MM et al (2015) Comparative effects of Aliskiren and Telmisartan in high fructose diet-induced metabolic syndrome in rats. Eur J Pharmacol 760:145–153

    Article  CAS  PubMed  Google Scholar 

  32. Owens CW, Belcher RV (1965) A colorimetric micro-method for the determination of glutathione. Biochem J 94:705–711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  34. Taye A, Saad AH, Kumar AH et al (2010) Effect of apocynin on NADPH oxidase-mediated oxidative stress-LOX-1-eNOS pathway in human endothelial cells exposed to high glucose. Eur J Pharmacol 627:42–48

    Article  CAS  PubMed  Google Scholar 

  35. Abouzied MM, Eltahir HM, Aziz MAA et al (2015) Curcumin ameliorate DENA-induced HCC via modulating TGF-beta, AKT, and caspase-3 expression in experimental rat model. Tumour Biol J Int Soc Oncodev Biol Med 36:1763–1771

    Article  CAS  Google Scholar 

  36. Blair PC, Thompson MB, Wilson RE et al (1991) Correlation of changes in serum analytes and hepatic histopathology in rats exposed to carbon tetrachloride. Toxicol Lett 55:149–159

    Article  CAS  PubMed  Google Scholar 

  37. Wiseman A (2006) Oxygen-induced reperfusion-injury is caused by ROS: amelioration is possible by recombinant-DNA antioxidant enzymes and mimics in selected tissues. Med Hypotheses 66:329–331

    Article  CAS  PubMed  Google Scholar 

  38. Cederbaum AI, Lu Y, Wu D (2009) Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol 83:519–548

    Article  CAS  PubMed  Google Scholar 

  39. Adamson GM, Harman AW (1993) Oxidative stress in cultured hepatocytes exposed to acetaminophen. Biochem Pharmacol 45:2289–2294

    Article  CAS  PubMed  Google Scholar 

  40. Brattin WJ, Glende EA Jr, Recknagel RO (1985) Pathological mechanisms in carbon tetrachloride hepatotoxicity. J Free Radic Biol Med 1:27–38

    Article  CAS  PubMed  Google Scholar 

  41. Xu Q, Shen YP, Xu AL (2006) Cystic degeneration in liver injury induced by CCl4 in SD rats. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China J Chin Mater Med 31:1880–1881

    Google Scholar 

  42. Nkosi CZ, Opoku AR, Terblanche SE (2005) Effect of pumpkin seed (Cucurbita pepo) protein isolate on the activity levels of certain plasma enzymes in CCl4-induced liver injury in low-protein fed rats. Phytother Res PTR 19:341–345

    Article  CAS  PubMed  Google Scholar 

  43. Mantawy EM, Tadros MG, Awad AS et al (2012) Insights antifibrotic mechanism of methyl palmitate: impact on nuclear factor kappa B and proinflammatory cytokines. Toxicol Appl Pharmacol 258:134–144

    Article  CAS  PubMed  Google Scholar 

  44. Ghiassi-Nejad Z, Friedman SL (2008) Advances in antifibrotic therapy. Expert Rev Gastroenterol Hepatol 2:803–816

    Article  PubMed Central  PubMed  Google Scholar 

  45. Gracia-Sancho J, Lavina B, Rodriguez-Vilarrupla A et al (2008) Increased oxidative stress in cirrhotic rat livers: a potential mechanism contributing to reduced nitric oxide bioavailability. Hepatology 47:1248–1256

    Article  CAS  PubMed  Google Scholar 

  46. Lavina B, Gracia-Sancho J, Rodriguez-Vilarrupla A et al (2009) Superoxide dismutase gene transfer reduces portal pressure in CCl4 cirrhotic rats with portal hypertension. Gut 58:118–125

    Article  CAS  PubMed  Google Scholar 

  47. Van De Casteele M, Van Pelt JF, Nevens F et al (2003) Low NO bioavailability in CCl4 cirrhotic rat livers might result from low NO synthesis combined with decreased superoxide dismutase activity allowing superoxide-mediated NO breakdown: a comparison of two portal hypertensive rat models with healthy controls. Comp Hepatol 2:2

    Article  PubMed Central  Google Scholar 

  48. Szymonik-Lesiuk S, Czechowska G, Stryjecka-Zimmer M et al (2003) Catalase, superoxide dismutase, and glutathione peroxidase activities in various rat tissues after carbon tetrachloride intoxication. J Hepato-Biliary-Pancreat Surg 10:309–315

    Article  Google Scholar 

  49. McClain CJ, Barve S, Deaciuc I et al (1999) Cytokines in alcoholic liver disease. Semin Liver Dis 19:205–219

    Article  CAS  PubMed  Google Scholar 

  50. Joshi-Barve S, Barve SS, Butt W et al (2003) Inhibition of proteasome function leads to NF-kappaB-independent IL-8 expression in human hepatocytes. Hepatology 38:1178–1187

    Article  CAS  PubMed  Google Scholar 

  51. Li R, Xu L, Liang T et al (2013) Puerarin mediates hepatoprotection against CCl4-induced hepatic fibrosis rats through attenuation of inflammation response and amelioration of metabolic function. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 52:69–75

    Article  CAS  Google Scholar 

  52. Luster MI, Simeonova PP, Gallucci R et al (1999) Tumor necrosis factor alpha and toxicology. Crit Rev Toxicol 29:491–511

    Article  CAS  PubMed  Google Scholar 

  53. Simeonova PP, Gallucci RM, Hulderman T et al (2001) The role of tumor necrosis factor-alpha in liver toxicity, inflammation, and fibrosis induced by carbon tetrachloride. Toxicol Appl Pharmacol 177:112–120

    Article  CAS  PubMed  Google Scholar 

  54. El-Sayed NS, Mahran LG, Khattab MM (2011) Tempol, a membrane-permeable radical scavenger, ameliorates lipopolysaccharide-induced acute lung injury in mice: a key role for superoxide anion. Eur J Pharmacol 663:68–73

    Article  CAS  PubMed  Google Scholar 

  55. Mariappan N, Soorappan RN, Haque M et al (2007) TNF-alpha-induced mitochondrial oxidative stress and cardiac dysfunction: restoration by superoxide dismutase mimetic Tempol. Am J Physiol Heart Circ Physiol 293:H2726–H2737

    Article  CAS  PubMed  Google Scholar 

  56. Cuzzocrea S, Pisano B, Dugo L et al (2004) Tempol reduces the activation of nuclear factor-kappaB in acute inflammation. Free Radic Res 38:813–819

    Article  CAS  PubMed  Google Scholar 

  57. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  CAS  PubMed  Google Scholar 

  58. Oral B, Guney M, Ozguner F et al (2006) Endometrial apoptosis induced by a 900-MHz mobile phone: preventive effects of vitamins E and C. Adv Ther 23:957–973

    Article  CAS  PubMed  Google Scholar 

  59. Yin XM, Ding WX (2003) Death receptor activation-induced hepatocyte apoptosis and liver injury. Curr Mol Med 3:491–508

    Article  CAS  PubMed  Google Scholar 

  60. Yokohama S, Yoneda M, Nakamura K et al (1999) Effect of central corticotropin-releasing factor on carbon tetrachloride-induced acute liver injury in rats. Am J Physiol 276:G622–G628

    CAS  PubMed  Google Scholar 

  61. Chiarotto GB, Drummond L, Cavarretto G et al (2014) Neuroprotective effect of tempol (4 hydroxy-tempo) on neuronal death induced by sciatic nerve transection in neonatal rats. Brain Res Bull 106:1–8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Mariana Fathy Kamel, lecturer of pathology at Faculty of Medicine, Minia University for her useful comments, remarks, and great effort in analyzing the histopathological findings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mekky M. Abouzied.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouzied, M.M., Eltahir, H.M., Taye, A. et al. Experimental evidence for the therapeutic potential of tempol in the treatment of acute liver injury. Mol Cell Biochem 411, 107–115 (2016). https://doi.org/10.1007/s11010-015-2572-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2572-2

Keywords

Navigation