Skip to main content
Log in

Increased oxidative stress in patients with 3-hydroxy-3-methylglutaric aciduria

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

3-hydroxy-3-methylglutaric aciduria (HMGA; OMIM 246450) is a rare autosomal recessive disorder, caused by the deficiency of 3-hydroxy-3-methylglutaryl-CoA lyase (4.1.3.4), which results in the accumulation of 3-hydroxy-3-methylglutaric (HMG) and 3-methylglutaric (MGA) acids in tissues and biological fluids of affected individuals. Recent in vivo and in vitro animal studies have demonstrated that the accumulation of these metabolites can disturb the cellular redox homeostasis, which can contribute to the neurological manifestations presented by the patients. So, in the present work, we investigated oxidative stress parameters in plasma and urine samples from HMGA patients, obtained at the moment of diagnosis of this disorder and during therapy with low-protein diet and L-carnitine supplementation. It was verified that untreated HMGA patients presented higher levels of urinary di-tyrosine and plasma thiobarbituric acid-reactive substances (TBA-RS), which are markers of protein and lipid oxidative damage, respectively, as well as a reduction of the urinary antioxidant capacity. Treated HMGA patients also presented an increased protein oxidative damage, as demonstrated by their higher concentrations of plasma protein carbonyl groups and urinary di-tyrosine, as well as by the reduction of total sulfhydryl groups in plasma, in relation to controls. On the other hand, HMGA patients under therapy presented normal levels of TBA-RS and urinary antioxidant capacity, which can be related, at least in part, to the antioxidant and antiperoxidative effects exerted by L-carnitine. The results of this work are the first report showing that a redox imbalance occurs in patients with HMGA what reinforces the importance of the antioxidant therapy in this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Faull KF, Bolton PD, Halpern B, Hammond J, Danks DM (1976) The urinary organic acid profile associated with 3-hydroxy-3-methylglutaric aciduria. Clin Chim Acta 3:553–559

    Article  Google Scholar 

  2. Wysocki SJ, Wilkinson SP, Hähnel R, Wong CY, Panegyres PK (1976) 3-Hydroxy-3-methylglutaric aciduria, combined with 3-methylglutaconic aciduria. Clin Chim Acta 3:399–406

    Article  Google Scholar 

  3. Chalmers RA, Lawson AM (1982) Organic acids in man. Analytical chemistry, biochemistry and diagnosis of the organic acidurias. Chapman and Hall, London

    Google Scholar 

  4. Gibson KM, Breuer J, Nyhan WL (1988) 3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency: review of 18 reported patients. Eur J Pediatr 148:180–186

    Article  CAS  PubMed  Google Scholar 

  5. Wajner M, Coelho DM, Ingrassia R, de Oliveira AB, Busanello EN, Raymond K, Flores Pires R, de Souza CF, Giugliani R, Vargas CR (2009) Selective screening for organic acidemias by urine organic acid GC-MS analysis in Brazil: fifteen-year experience. Clin Chim Acta 400:77–81

    Article  CAS  PubMed  Google Scholar 

  6. Vargas CR, Sitta A, Schmitt G, Ferreira GC, Cardoso ML, Coelho D, Gibson KM, Wajner M (2007) Incidence of 3-hydroxy-3-methylglutaryl-coenzyme A lyase (HL) deficiency in Brazil, South America, J Inherit Metab Dis pp. 1–5

  7. Sweetman L, Williams JC (2001) Branched chain organic acidurias. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1387–1422

    Google Scholar 

  8. Zafeiriou DI, Vargiami E, Mayapetek E, Augoustidou-Savvopoulou P, Mitchell GA (2007) 3-Hydroxy-3-methylglutaryl coenzyme a lyase deficiency with reversible white matter changes after treatment. Pediatr Neurol 37:47–50

    Article  PubMed  Google Scholar 

  9. Gibson KM, Cassidy SB, Seaver LH, Wanders RJ, Kennaway NG, Mitchell GA, Spark RP (1994) Fatal cardiomyopathy associated with 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. J Inherit Metab Dis 17:291–294

    Article  CAS  PubMed  Google Scholar 

  10. Funghini S, Pasquini E, Cappellini M, Donati MA, Morrone A, Fonda C, Zammarchi E (2001) 3-Hydroxy-3-methylglutaric aciduria in an Italian patient is caused by a new nonsense mutation in the HMGCL gene. Mol Genet Metab 73:268–275

    Article  CAS  PubMed  Google Scholar 

  11. Pierron S, Giudicelli H, Moreigne M, Khalfi A, Touati G, Caruba C, Rolland MO, Acquaviva C (2010) Late onset 3-HMG-CoA lyase deficiency: a rare but treatable disorder. Arch Pediatr 17:10–13

    Article  CAS  PubMed  Google Scholar 

  12. Lyon G, Adams RD, Kolodny EH (1996) The neurology of neonatal hereditary metabolic diseases. In: Lyon G (ed) Neurology of hereditary metabolic diseases of children. Mc Graw-Hill, New York, pp 6–44

    Google Scholar 

  13. Dasouki M, Buchanan D, Mercer N, Gibson KM, Thoene J (1987) 3-Hydroxy-3-methylglutaric aciduria: response to carnitine therapy and fat and leucine restriction. J Inherit Metab Dis 10:142–146

    Article  CAS  PubMed  Google Scholar 

  14. Kahler SG, Sherwood WG, Woolf D, Lawless ST, Zaritsky A, Bonham J, Taylor CJ, Clarke JT, Durie P, Leonard JV (1994) Pancreatitis in patients with organic acidemias. J Pediatr 124:239–243

    Article  CAS  PubMed  Google Scholar 

  15. Mitchell GA, Jakobs C, Gibson KM, Robert MF, Burlina A, Dionisi-Vici C, Dallaire L (1995) Molecular prenatal diagnosis of 3-hydroxy-3-methylglutaryl CoA lyase deficiency. Prenat Diagn 15:725–729

    Article  CAS  PubMed  Google Scholar 

  16. Leung AA, Chan AK, Ezekowitz AJ, Leung AK (2009) A Case of Dilated Cardiomyopathy Associated with 3-Hydroxy-3-Methylglutaryl-Coenzyme A (HMG CoA) Lyase Deficiency. Case Rep Med 2009:183125

    PubMed Central  PubMed  Google Scholar 

  17. Fernandes CG, da Rosa MS, Seminotti B, Pierozan P, Martell RW, Lagranha VL, Busanello EN, Leipnitz G, Wajner M (2013) In vivo experimental evidence that the major metabolites accumulating in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency induce oxidative stress in striatum of developing rats: a potential pathophysiological mechanism of striatal damage in this disorder. Mol Genet Metab 109:144–153

    Article  CAS  PubMed  Google Scholar 

  18. Leipnitz G, Seminotti B, Haubrich J, Dalcin MB, Dalcin KB, Solano A, de Bortoli G, Rosa RB, Amaral AU, Dutra-Filho CS, Latini A, Wajner M (2008) Evidence that 3-hydroxy-3-methylglutaric acid promotes lipid and protein oxidative damage and reduces the nonenzymatic antioxidant defenses in rat cerebral cortex. J Neurosci Res 86:683–693

    Article  CAS  PubMed  Google Scholar 

  19. Leipnitz G, Seminotti B, Fernandes CG, Amaral AU, Beskow AP, da Silva Lde B, Zanatta A, Ribeiro CA, Vargas CR, Wajner M (2009) Striatum is more vulnerable to oxidative damage induced by the metabolites accumulating in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency as compared to liver. Int J Dev Neurosci 27:351–356

    Article  CAS  PubMed  Google Scholar 

  20. Ulker S, McKeow PP, Bayraktutan U (2003) Vitamins reverse endothelial dysfunction through regulation of NOS and NAD(P)H oxidase activities. Hypertension 41:534–539

    Article  PubMed  Google Scholar 

  21. Vanella A, Russo A, Acquaviva R, Campisi A, Di Giacomo C, Sorrenti V, Barcellona ML (2000) L-propionyl-carnitine as superoxide scavenger, antioxidant, and DNA cleavage protector. Cell Biol Toxicol 16:99–104

    Article  CAS  PubMed  Google Scholar 

  22. Sitta A, Barschak AG, Deon M, de Mari JF, Barden AT, Vanzin CS, Biancini GB, Schwartz IV, Wajner M, Vargas CR (2009) L-carnitine blood levels and oxidative stress in treated phenylketonuric patients. Cell Mol Neurobiol 29:211–218

    Article  CAS  PubMed  Google Scholar 

  23. Ribas GS, Vargas CR, Wajner M (2014) L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene 533:469–476

    Article  CAS  PubMed  Google Scholar 

  24. Mescka CP, Wayhs CA, Vanzin CS, Biancini GB, Guerreiro G, Manfredini V, Souza C, Wajner M, Dutra-Filho CS, Vargas CR (2013) Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect. Int J Dev Neurosci 31:21–24

    Article  CAS  PubMed  Google Scholar 

  25. Sweetman L (1991) Organic acid analysis. In: Hommes FA (ed) Techniques in diagnostic human biochemical genetics. Wiley-Liss, New York, pp 143–176

    Google Scholar 

  26. Chace DH, Hillman SL, Van Hove JL, Naylor EW (1997) Rapid diagnosis of MCAD deficiency: quantitatively analysis of octanoylcarnitine and other acylcarnitines in newborn blood spots by tandem mass spectrometry. Clin Chem 43:2106–2113

    CAS  PubMed  Google Scholar 

  27. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  PubMed  Google Scholar 

  28. Ribas GS, Manfredini V, de Mari JF, Wayhs CY, Vanzin CS, Biancini GB, Sitta A, Deon M, Wajner M, Vargas CR (2010) Reduction of lipid and protein damage in patients with disorders of propionate metabolism under treatment: a possible protective role of L-carnitine supplementation. Int J Dev Neurosci 28:127–132

    Article  CAS  PubMed  Google Scholar 

  29. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145

    Article  CAS  PubMed  Google Scholar 

  30. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  31. Mescka C, Moraes T, Rosa A, Mazzola P, Piccoli B, Jacques C, Dalazen G, Coelho J, Cortes M, Terra M, Regla Vargas C, Dutra-Filho CS (2011) In vivo neuroprotective effect of L-carnitine against oxidative stress in maple syrup urine disease. Metab Brain Dis 26:21–28

    Article  CAS  PubMed  Google Scholar 

  32. Kirschbaum B (2002) Correlative studies of urine fluorescence and free radical indicators. Clin Nephrol 58:344–349

    Article  CAS  PubMed  Google Scholar 

  33. Ribas GS, Biancini GB, Mescka C, Wayhs CY, Sitta A, Wajner M, Vargas CR (2012) Oxidative stress parameters in urine from patients with disorders of propionate metabolism: a beneficial effect of L:-carnitine supplementation. Cell Mol Neurobiol 32:77–82

    Article  CAS  PubMed  Google Scholar 

  34. da Rosa MS, Seminotti B, Amaral AU, Fernandes CG, Gasparotto J, Moreira JC, Gelain DP, Wajner M, Leipnitz G (2013) Redox homeostasis is compromised in vivo by the metabolites accumulating in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency in rat cerebral cortex and liver. Free Radic Res 47:1066–1075

    Article  PubMed  Google Scholar 

  35. Ribeiro CA, Hickmann FH, Wajner M (2011) Neurochemical evidence that 3-methylglutaric acid inhibits synaptic Na+, K+-ATPase activity probably through oxidative damage in brain cortex of young rats. Int J Dev Neurosci 29:1–7

    Article  CAS  PubMed  Google Scholar 

  36. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Claredon Press, Oxford

    Google Scholar 

  37. Il’yasova D, Scarbrough P, Spasojevic I (2012) Urinary biomarkers of oxidative status. Clin Chim Acta 413:1446–1453

    Article  PubMed Central  PubMed  Google Scholar 

  38. Van der Vliet A, Smith D, O’Neill CA, Kaur H, Darley-Usmar V, Cross CE, Halliwell B (1994) Interactions of peroxynitrite with human plasma and its constituents: oxidative damage and antioxidant depletion. Biochem J 303:295–301

    PubMed Central  PubMed  Google Scholar 

  39. Calabrese V, Giuffrida Stella AM, Calvani M, Butterfield DA (2006) Acetylcarnitine and cellular stress response: roles in nutritional redox homeostasis and regulation of longevity genes. J Nutr Biochem 17:73–88

    Article  CAS  PubMed  Google Scholar 

  40. Wajner M, Latini A, Wyse AT, Dutra-Filho CS (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 27:427–448

    Article  CAS  PubMed  Google Scholar 

  41. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Mattson MP (2004) Metal-catalyzed disruption of membrane protein and lipid signaling in the pathogenesis of neurodegenerative disorders. Ann N Y Acad Sci 1012:37–50

    Article  CAS  PubMed  Google Scholar 

  43. Pantke U, Volk T, Schmutzler M, Kox WJ, Sitte N, Grune T (1999) Oxidized proteins as a marker of oxidative stress during coronaryheart surgery. Free Radic Biol Med 27:1080–1086

    Article  CAS  PubMed  Google Scholar 

  44. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38

    Article  CAS  PubMed  Google Scholar 

  45. Gülçin I (2006) Antioxidant and antiradical activities of L-carnitine. Life Sci 78:803–811

    Article  PubMed  Google Scholar 

  46. Muthuswamy AD, Vedagiri K, Ganesan M, Chinnakannu P (2006) Oxidative stress-mediated macromolecular damage and dwindle in antioxidant status inaged rat brain regions: role of L-carnitine and DL-alpha-lipoic acid. Clin Chim Acta 368:84–92

    Article  CAS  PubMed  Google Scholar 

  47. Rani PJ, Panneerselvam C (2002) Effect of L-carnitine on brain lipid peroxidationand antioxidant enzymes in old rats. J Gerontol A Biol Sci Med Sci 57:134–137

    Article  Google Scholar 

  48. Sitta A, Vanzin CS, Biancini GB, Manfredini V, de Oliveira AB, Wayhs CA, Ribas GO, Giugliani L, Schwartz IV, Bohrer D, Garcia SC, Wajner M, Vargas CR (2011) Evidence that L-carnitine and selenium supplementation reduces oxidative stress in phenylketonuric patients. Cell Mol Neurobiol 31:429–436

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the patients, their families, and the physicians of the patients. This work was supported in part by grants from CNPq, FAPERGS, and FIPE/HCPA-Brazil.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mariana dos Santos Mello or Carmen Regla Vargas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Mello, M., Ribas, G.S., Wayhs, C.A.Y. et al. Increased oxidative stress in patients with 3-hydroxy-3-methylglutaric aciduria. Mol Cell Biochem 402, 149–155 (2015). https://doi.org/10.1007/s11010-014-2322-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2322-x

Keywords

Navigation