Skip to main content

Advertisement

Log in

The effect of combined regulation of the expression of peroxisome proliferator-activated receptor-γ and calcitonin gene-related peptide on alcohol-induced adipogenic differentiation of bone marrow mesenchymal stem cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Studies have shown that alcohol can upregulate the expression of peroxisome proliferator-activated receptor-γ (PPARγ) gene in bone marrow mesenchymal stem cells (BMSCs). High expression of PPARγ can promote adipogenic differentiation of BMSCs, and reduce their osteogenic differentiation. Abnormal proliferation of adipocytes and fatty accumulation in osteocytes can result in high intraosseous pressure and disturbance of blood circulation in the femoral head, which induces osteonecrosis of the femoral head (ONFH). Downregulation of PPARγ is efficient in inhibiting adipogenesis and maintaining osteogenesis of BMSCs, which might potentially reduce the incidence of ONFH. Calcitonin gene-related peptide (CGRP) is a neuropeptide gene which has been closely associated with bone regeneration. In this study, we aimed to observe the effect of combined regulation of the expression of PPARγ and CGRP genes on alcohol-induced adipogenic differentiation of BMSCs. Our results demonstrated that simultaneous downregulation of PPARγ and upregulation of CGRP was efficient in suppressing adipogenic differentiation of BMSCs and promoting their osteogenic differentiation. These findings might enlighten a novel approach for the prevention of ONFH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang YS, Li YB, Mao KY, Li J, Cui QJ, Wang GJ (2003) Alcohol-induced adipogenesis in bone and marrow: a possible mechanism for osteonecrosis. Clin Orthop Relat Res 410:213–224

    Article  PubMed  Google Scholar 

  2. Kim MH, Cho GW, Huh YM, Kim SH (2010) Transduction of human EPO into human bone marrow mesenchymal stromal cells synergistically enhances cell-protective and migratory effects. Mol Biol (Mosk) 44:656–663

    Article  Google Scholar 

  3. Zhang L, Zheng W, Wang Y, Wang Y, Huang H (2013) Human bone marrow mesenchymal stem cells support the derivation and propagation of human induced pluripotent stem cells in culture. Cell Reprogr 15:216–223

    Article  Google Scholar 

  4. Agata H, Asahina I, Watanabe N, Ishii Y, Kubo N, Ohshima S, Yamazaki M, Tojo A, Kagami H (2010) Characteristic change and loss of in vivo osteogenic abilities of human bone marrow stromal cells during passage. Tissue Eng Part A 16:663–673

    Article  CAS  PubMed  Google Scholar 

  5. Edamura K, Kuriyama K, Kato K, Nakano R, Teshima K, Asano K, Sato T, Tanaka S (2012) Proliferation capacity, neuronal differentiation potency and microstructures after the differentiation of canine bone marrow stromal cells into neurons. J Vet Med Sci 74:923–927

    Article  PubMed  Google Scholar 

  6. Post S, Abdallah BM, Bentzon JF, Kassem M (2008) Demonstration of the presence of independent pre-osteoblastic and pre-adipocytic cell populations in bone marrow-derived mesenchymal stem cells. Bone 43:32–39

    Article  CAS  PubMed  Google Scholar 

  7. Curtis KM, Gomez LA, Schiller PC (2012) Rac1b regulates NT3-stimulated Mek-Erk signaling, directing marrow-isolated adult multilineage inducible (MIAMI) cells toward an early neuronal phenotype. Mol Cell Neurosci 49:138–148

    Article  CAS  PubMed  Google Scholar 

  8. Steger DJ, Grant GR, Schupp M, Tomaru T, Lefterova MI, Schug J, Manduchi E, Stoeckert CJ Jr, Lazar MA (2010) Propagation of adipogenic signals through an epigenomic transition state. Genes Dev 24:1035–1044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Arck P, Toth B, Pestka A, Jeschke U (2010) Nuclear receptors of the peroxisome proliferator-activated receptor (PPAR) family in gestational diabetes: from animal models to clinical trials. Biol Reprod 83:168–176

    Article  CAS  PubMed  Google Scholar 

  10. Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, Mueller E, Benjamin T, Spiegelman BM, Sharp PA, Hopkins N, Yaffe MB (2005) TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309:1074–1078

    Article  CAS  PubMed  Google Scholar 

  11. Park KW, Waki H, Choi SP, Park KM, Tontonoz P (2010) The small molecule phenamil is a modulator of adipocyte differentiation and PPARgamma expression. J Lipid Res 51:2775–2784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Takada I, Kouzmenko AP, Kato S (2009) Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 5:442–447

    Article  CAS  PubMed  Google Scholar 

  13. Li X, Cui Q, Kao C, Wang GJ, Balian G (2003) Lovastatin inhibits adipogenic and stimulates osteogenic differentiation by suppressing PPARgamma2 and increasing Cbfa1/Runx2 expression in bone marrow mesenchymal cell cultures. Bone 33:652–659

    Article  CAS  PubMed  Google Scholar 

  14. Tsujikawa K, Yayama K, Hayashi T et al (2007) Hypertension and dysregulated proinflammatory cytokine production in receptor activity-modifying protein 1-deficient mice. Proc Nati Acad Sci USA 104:16702–16707

    Article  CAS  Google Scholar 

  15. Lerner UH (2006) Deletions of genes encoding calcitonin/alpha-CGRP, amylin and calcitonin receptor have given new and unexpected insights into the function of calcitonin receptors and calcitonin receptor-like receptors in bone. J Musculoskelet Neuronal Interact 6:87–95

    CAS  PubMed  Google Scholar 

  16. Wang YS, Wang YH, Zhao GQ, Li YB (2011) Osteogenic potential of human calcitonin gene-related peptide alpha gene-modified bone marrow mesenchymal stem cells. Chin Med J 124:3976–3981

    CAS  PubMed  Google Scholar 

  17. Deng W, Bivalacqua TJ, Chattergoon NN, Jeter JR Jr, Kadowitz PJ (2004) Engineering ex vivo-expanded marrow stromal cells to secrete calcitonin gene-related peptide using adenoviral vector. Stem Cells 22:1279–1291

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Kreicbergs A, Bergström J, Stark A, Ahmed M (2007) Site-specific CGRP innervation coincides with bone formation during fracture healing and modeling: a study in rat angulated tibia. J Orthop Res 25:1204–1212

    Article  PubMed  Google Scholar 

  19. Tsujikawa K, Yayama K, Hayashi T, Matsushita H et al (2007) Hypertension and dysregulated proinflammatory cytokine production in receptor activity-modifying protein 1-deficient mice. Proc Nati Acad Sci USA 104:16702–16707

    Article  CAS  Google Scholar 

  20. Imai S, Matsusue Y (2002) Neuronal regulation of bone metabolism and anabolism: calcitonin gene-related peptide-, substance P-, and tyrosine hydroxylase-containing nerves and the bone. Microsc Res Tech 58:61–69

    Article  CAS  PubMed  Google Scholar 

  21. Hara-Irie F, Amizuka N, Ozawa H (1996) Immunohistochemical and ultrastructural localization of CGRP-positive nerve fibers at the epiphyseal trabecules facing the growth plate of rat femurs. Bone 18:29–39

    Article  CAS  PubMed  Google Scholar 

  22. Hukkanen M, Konttinen YT, Santavirta S, Paavolainen P, Gu XH, Terenghi G, Polak JM (1993) Rapid proliferation of calcitonin gene-related peptide-immunoreactive nerves during healing of rat tibial fracture suggests neural involvement in bone growth and remodelling. Neuroscience 54:969–979

    Article  CAS  PubMed  Google Scholar 

  23. Aoki M, Tamai K, Saotome K (1994) Substance p-related and calcitonin-gene-related peptide- immunofluorescent nerves in the repair of experimental bone defects. Int Orthop 18:317–324

    Article  CAS  PubMed  Google Scholar 

  24. Cui QJ, Wang YS, Saleh KJ, Wang GJ, Balian G (2006) Alcohol-induced adipogenesis in a cloned bone-marrow stem cell. J Bone Joint Surg Am 88:148–154

    Article  PubMed  Google Scholar 

  25. Liu M, Wang YS, Li YB, Zhao GQ (2012) Construction and identification of the recombinant adenovirus vector carrying a small interfering RNA targeting the peroxisome proliferator-activated receptor-γ. Chin Med J (Engl) 125:671–675

    CAS  Google Scholar 

  26. Yin L, Li YB, Wang YS (2006) Dexamethasone-induced adipogenesis in primary marrow stromal cell cultures: mechanism of steroid-induced osteonecrosis. Chin Med J (Engl) 119:581–588

    CAS  Google Scholar 

  27. Wang YS, Yin L, Li YB, Liu PL, Cui QJ (2008) Preventive effects of puerarin on alcohol-induced osteonecrosis. Clin Orthop 466:1059–1067

    Article  PubMed Central  PubMed  Google Scholar 

  28. Dong SW, Ying DJ, Duan XJ, Xie Z, Yu ZJ, Zhu CH, Yang B, Sun JS (2009) Bone regeneration using an acellular extracellular matrix and bone marrow mesenchymal stem cells expressing Cbfa1. Biosci Biotechnol Biochem 73:2226–2233

    CAS  Google Scholar 

  29. Tu Q, Zhang J, James L, Dickson J, Tang J, Yang P, Chen J (2007) Cbfa1/Runx2-deficiency delays bone wound healing and locally delivered Cbfa1/Runx2 promotes bone repair in animal models. Wound Repair Regen 5:404–412

    Article  Google Scholar 

  30. Jeon MJ, Kim JA, Kwon SH, Kim SW, Park KS, Park SW, Kim SY, Shin CS (2003) Activation of peroxisome proliferator-activated receptor-gamma inhibits the Runx2-mediated transcription of osteocalcin in osteoblasts. J Biol Chem 278:23270–23277

    Article  CAS  PubMed  Google Scholar 

  31. Phillips JE, Gersbach CA, Wojtowicz AM, García AJ (2006) Glucocorticoid-induced osteogenesis is negatively regulated by Runx2/Cbfal serine phosphorylation. J Cell Sci 119:581–591

    Article  CAS  PubMed  Google Scholar 

  32. Han N, Jiang BG, Wang TB, Zhang PX, Kou YH, Zhang DY (2011) Effect of calcitonin gene-related peptide on RUNX2 expression in primary rat osteoblasts. Beijing Da Xue Xue Bao (Chin) 43:652–656

    CAS  Google Scholar 

  33. Mittag F, Falkenberg EM, Janczyk A, Götze M, Felka T, Aicher WK, Kluba T (2012) Laminin-5 and type I collagen promote adhesion and osteogenic differentiation of animal serum-free expanded human mesenchymal stromal cells. Orthop Rev (Pavia) 4:e36

    Article  Google Scholar 

  34. Salasznyk RM, Klees RF, Boskey A, Plopper GE (2007) Activation of FAK is necessary for the osteogenic differentiation of human mesenchymal stem cells on laminin-5. J Cell Biochem 100:499–514

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 81171776).

Conflict of interest

The authors have declared that no competing interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yisheng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Wang, Y., Li, Y. et al. The effect of combined regulation of the expression of peroxisome proliferator-activated receptor-γ and calcitonin gene-related peptide on alcohol-induced adipogenic differentiation of bone marrow mesenchymal stem cells. Mol Cell Biochem 392, 39–48 (2014). https://doi.org/10.1007/s11010-014-2016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2016-4

Keywords

Navigation