Skip to main content

Advertisement

Log in

Curcumin enhances TRAIL-induced apoptosis of breast cancer cells by regulating apoptosis-related proteins

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The TNF-related apoptosis inducing ligand (TRAIL) has promising anti-cancer therapeutic activity, although significant percentage of primary tumors resistant to TRAIL-induced apoptosis remains an obstacle to the extensive use of TRAIL-based mono-therapies. Natural compound curcumin could potentially sensitize resistant cancer cells to TRAIL. We found that the combination of TRAIL with curcumin can synergistically induces apoptosis in three TRAIL-resistant breast cancer cell lines. The mechanism behind this synergistic cell death was investigated by examining an effect of curcumin on the expression and activation of TRAIL-associated cell death proteins. Immunoblotting, RNA interference, and use of chemical inhibitors of TRAIL-activate signaling revealed differential effects of curcumin on the expression of Mcl-1 and activities of ERK and Akt. Curcumin-induced production of reactive oxygen species did not affect total expression of DR5 but it enhanced mobilization of DR5 to the plasma membrane. In these breast cancer cells curcumin also induced downregulation of IAP proteins. Taken together, our data suggest that a combination of TRAIL and curcumin is a potentially promising treatment for breast cancer, although the specific mechanisms involved in this sensitization could differ even among breast cancer cells of different origins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75(4):787–809. doi:10.1016/j.bcp.2007.08.016

    Article  PubMed  CAS  Google Scholar 

  2. Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer 41(13):1955–1968. doi:10.1016/j.ejca.2005.05.009

    Article  PubMed  CAS  Google Scholar 

  3. Cole GM, Teter B, Frautschy SA (2007) Neuroprotective effects of curcumin. Adv Exp Med Biol 595:197–212. doi:10.1007/978-0-387-46401-5_8

    Article  PubMed  Google Scholar 

  4. Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL (2005) A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res 2(2):131–136

    Article  PubMed  CAS  Google Scholar 

  5. Jung EM, Lim JH, Lee TJ, Park JW, Choi KS, Kwon TK (2005) Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated upregulation of death receptor 5 (DR5). Carcinogenesis 26(11):1905–1913. doi:10.1093/carcin/bgi167

    Article  PubMed  CAS  Google Scholar 

  6. Walczak H, Krammer PH (2000) The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 256(1):58–66. doi:10.1006/excr.2000.4840

    Article  PubMed  CAS  Google Scholar 

  7. Kelley SK, Ashkenazi A (2004) Targeting death receptors in cancer with Apo2L/TRAIL. Curr Opin Pharmacol 4(4):333–339. doi:10.1016/j.coph.2004.02.006

    Article  PubMed  CAS  Google Scholar 

  8. Zhang XD, Nguyen T, Thomas WD, Sanders JE, Hersey P (2000) Mechanisms of resistance of normal cells to TRAIL induced apoptosis vary between different cell types. FEBS Lett 482(3):193–199

    Article  PubMed  CAS  Google Scholar 

  9. Dejosez M, Ramp U, Mahotka C, Krieg A, Walczak H, Gabbert HE, Gerharz CD (2000) Sensitivity to TRAIL/APO-2L-mediated apoptosis in human renal cell carcinomas and its enhancement by topotecan. Cell Death Differ 7(11):1127–1136. doi:10.1038/sj.cdd.4400746

    Article  PubMed  CAS  Google Scholar 

  10. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Investig 104(2):155–162. doi:10.1172/JCI6926

    Article  PubMed  CAS  Google Scholar 

  11. Mahalingam D, Szegezdi E, Keane M, de Jong S, Samali A (2009) TRAIL receptor signalling and modulation: are we on the right TRAIL? Cancer Treat Rev 35(3):280–288. doi:10.1016/j.ctrv.2008.11.006

    Article  PubMed  CAS  Google Scholar 

  12. Zhang Y, Zhang B (2008) TRAIL resistance of breast cancer cells is associated with constitutive endocytosis of death receptors 4 and 5. Mol Cancer Res 6(12):1861–1871. doi:10.1158/1541-7786.MCR-08-0313

    Article  PubMed  CAS  Google Scholar 

  13. Nakshatri H, Rice SE, Bhat-Nakshatri P (2004) Antitumor agent parthenolide reverses resistance of breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through sustained activation of c-Jun N-terminal kinase. Oncogene 23(44):7330–7344. doi:10.1038/sj.onc.1207995

    Article  PubMed  CAS  Google Scholar 

  14. Shankar E, Sivaprasad U, Basu A (2008) Protein kinase C epsilon confers resistance of MCF-7 cells to TRAIL by Akt-dependent activation of Hdm2 and downregulation of p53. Oncogene 27(28):3957–3966. doi:10.1038/onc.2008.39

    Article  PubMed  CAS  Google Scholar 

  15. Srivastava RK, Kurzrock R, Shankar S (2010) MS-275 sensitizes TRAIL-resistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo. Mol Cancer Ther 9(12):3254–3266. doi:10.1158/1535-7163.MCT-10-0582

    Article  PubMed  CAS  Google Scholar 

  16. Shankar S, Ganapathy S, Chen Q, Srivastava RK (2008) Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis. Mol cancer 7:16. doi:10.1186/1476-4598-7-16

    Article  PubMed  Google Scholar 

  17. Deeb D, Jiang H, Gao X, Hafner MS, Wong H, Divine G, Chapman RA, Dulchavsky SA, Gautam SC (2004) Curcumin sensitizes prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L by inhibiting nuclear factor-kappaB through suppression of IkappaBalpha phosphorylation. Mol Cancer Ther 3(7):803–812

    PubMed  CAS  Google Scholar 

  18. Andrzejewski T, Deeb D, Gao X, Danyluk A, Arbab AS, Dulchavsky SA, Gautam SC (2008) Therapeutic efficacy of curcumin/TRAIL combination regimen for hormone-refractory prostate cancer. Oncol Res 17(6):257–267

    Article  PubMed  CAS  Google Scholar 

  19. Wahl H, Tan L, Griffith K, Choi M, Liu JR (2007) Curcumin enhances Apo2L/TRAIL-induced apoptosis in chemoresistant ovarian cancer cells. Gynecol Oncol 105(1):104–112. doi:10.1016/j.ygyno.2006.10.050

    Article  PubMed  CAS  Google Scholar 

  20. Gao X, Deeb D, Jiang H, Liu YB, Dulchavsky SA, Gautam SC (2005) Curcumin differentially sensitizes malignant glioma cells to TRAIL/Apo2L-mediated apoptosis through activation of procaspases and release of cytochrome c from mitochondria. J exp ther oncol 5(1):39–48

    PubMed  Google Scholar 

  21. Oh B, Park S, Pak JH, Kim I (2012) Downregulation of Mcl-1 by daunorubicin pretreatment reverses resistance of breast cancer cells to TNF-related apoptosis-inducing ligand. Biochem Biophys Res Commun 422(1):42–47. doi:10.1016/j.bbrc.2012.04.093

    Article  PubMed  CAS  Google Scholar 

  22. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644. doi:10.1038/nrd2926

    Article  PubMed  CAS  Google Scholar 

  23. Kim SH, Ricci MS, El-Deiry WS (2008) Mcl-1: a gateway to TRAIL sensitization. Cancer Res 68(7):2062–2064. doi:10.1158/0008-5472.CAN-07-6278

    Article  PubMed  CAS  Google Scholar 

  24. Ricci MS, Kim SH, Ogi K, Plastaras JP, Ling J, Wang W, Jin Z, Liu YY, Dicker DT, Chiao PJ, Flaherty KT, Smith CD, El-Deiry WS (2007) Reduction of TRAIL-induced Mcl-1 and cIAP2 by c-Myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death. Cancer Cell 12(1):66–80. doi:10.1016/j.ccr.2007.05.006

    Article  PubMed  CAS  Google Scholar 

  25. Meng XW, Lee SH, Dai H, Loegering D, Yu C, Flatten K, Schneider P, Dai NT, Kumar SK, Smith BD, Karp JE, Adjei AA, Kaufmann SH (2007) Mcl-1 as a buffer for proapoptotic Bcl-2 family members during TRAIL-induced apoptosis: a mechanistic basis for sorafenib (Bay 43-9006)-induced TRAIL sensitization. J Biol Chem 282(41):29831–29846. doi:10.1074/jbc.M706110200

    Article  PubMed  CAS  Google Scholar 

  26. Rosato RR, Almenara JA, Coe S, Grant S (2007) The multikinase inhibitor sorafenib potentiates TRAIL lethality in human leukemia cells in association with Mcl-1 and cFLIPL down-regulation. Cancer Res 67(19):9490–9500. doi:10.1158/0008-5472.CAN-07-0598

    Article  PubMed  CAS  Google Scholar 

  27. Wirth T, Kuhnel F, Fleischmann-Mundt B, Woller N, Djojosubroto M, Rudolph KL, Manns M, Zender L, Kubicka S (2005) Telomerase-dependent virotherapy overcomes resistance of hepatocellular carcinomas against chemotherapy and tumor necrosis factor-related apoptosis-inducing ligand by elimination of Mcl-1. Cancer Res 65(16):7393–7402. doi:10.1158/0008-5472.CAN-04-3664

    Article  PubMed  CAS  Google Scholar 

  28. Mott JL, Kobayashi S, Bronk SF, Gores GJ (2007) mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26(42):6133–6140. doi:10.1038/sj.onc.1210436

    Article  PubMed  CAS  Google Scholar 

  29. Ramachandran C, Rodriguez S, Ramachandran R, Raveendran Nair PK, Fonseca H, Khatib Z, Escalon E, Melnick SJ (2005) Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines. Anticancer Res 25(5):3293–3302

    PubMed  CAS  Google Scholar 

  30. Hay N (2005) The Akt-mTOR tango and its relevance to cancer. Cancer Cell 8(3):179–183. doi:10.1016/j.ccr.2005.08.008

    Article  PubMed  CAS  Google Scholar 

  31. Plastaras JP, Dorsey JF, Carroll K, Kim SH, Birnbaum MJ, El-Deiry WS (2008) Role of PI3K/Akt signaling in TRAIL- and radiation-induced gastrointestinal apoptosis. Cancer Biol Ther 7(12):2047–2053

    Article  PubMed  CAS  Google Scholar 

  32. Kandasamy K, Srivastava RK (2002) Role of the phosphatidylinositol 3′-kinase/PTEN/Akt kinase pathway in tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in non-small cell lung cancer cells. Cancer Res 62(17):4929–4937

    PubMed  CAS  Google Scholar 

  33. Nesterov A, Lu X, Johnson M, Miller GJ, Ivashchenko Y, Kraft AS (2001) Elevated AKT activity protects the prostate cancer cell line LNCaP from TRAIL-induced apoptosis. J Biol Chem 276(14):10767–10774. doi:10.1074/jbc.M005196200

    Article  PubMed  CAS  Google Scholar 

  34. Kizhakkayil J, Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S (2010) Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells. Biochem Biophys Res Commun 394(3):476–481. doi:10.1016/j.bbrc.2010.01.132

    Article  PubMed  CAS  Google Scholar 

  35. Lee TJ, Lee JT, Park JW, Kwon TK (2006) Acquired TRAIL resistance in human breast cancer cells are caused by the sustained cFLIP(L) and XIAP protein levels and ERK activation. Biochem Biophys Res Commun 351(4):1024–1030. doi:10.1016/j.bbrc.2006.10.163

    Article  PubMed  CAS  Google Scholar 

  36. Soderstrom TS, Poukkula M, Holmstrom TH, Heiskanen KM, Eriksson JE (2002) Mitogen-activated protein kinase/extracellular signal-regulated kinase signaling in activated T cells abrogates TRAIL-induced apoptosis upstream of the mitochondrial amplification loop and caspase-8. J Immunol 169(6):2851–2860

    PubMed  CAS  Google Scholar 

  37. Tran SE, Holmstrom TH, Ahonen M, Kahari VM, Eriksson JE (2001) MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J Biol Chem 276(19):16484–16490. doi:10.1074/jbc.M010384200

    Article  PubMed  CAS  Google Scholar 

  38. Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO j 16(23):6914–6925. doi:10.1093/emboj/16.23.6914

    Article  PubMed  CAS  Google Scholar 

  39. Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC (1999) Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO j 18(19):5242–5251. doi:10.1093/emboj/18.19.5242

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Yujeonja-Donguibogam project based on Traditional herbs (Grant No. 2012M3A9C4048793), Republic of Korea, and by the International Research & Development Program of the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education, Science and Technology (MEST) of Korea (Grant No. NRF-2012K1A3A1A07045330), and by the Grant (2012-512) from the ASAN Institute for Life Sciences, Seoul, Korea.

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inki Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Cho, D.H., Andera, L. et al. Curcumin enhances TRAIL-induced apoptosis of breast cancer cells by regulating apoptosis-related proteins. Mol Cell Biochem 383, 39–48 (2013). https://doi.org/10.1007/s11010-013-1752-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1752-1

Keywords

Navigation