Skip to main content
Log in

Downregulation of NF-κB and PCNA in the regulatory pathways of apoptosis by cyclooxygenase-2 inhibitors in experimental lung cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) are emerging as novel chemopreventive agents against a variety of cancers owing to their capability in blocking the tumor development by cellular proliferation, angiogenesis and by promoting apoptosis. The present study further explored the comparative role of a traditional NSAID, indomethacin and a newly developed coxib, etoricoxib against 9,10-dimethylbenz(a)anthracene (DMBA)-induced lung carcinogenesis in rats. Morphological and histological analysis revealed the occurrence of tumors and lesions along with constricted alveolar spaces in the DMBA treated animals which were largely corrected both by indomethacin and etoricoxib. COX-1 was found to be uniformly expressed in all the groups while COX-2 levels were raised prominently in the DMBA treated animals. Proliferation, as studied by PCNA expression was found to be markedly increased in the DMBA group as compared to the others. Increased NF-κB expression in the DMBA group was found to correct with the co-administration of NSAIDs. Also, fluorescent co-staining of the isolated lung cells revealed a significantly decreased apoptosis and altered mitochondrial membrane potential. In conclusion, these parameters indicate to the chemopreventive action of the two NSAIDs studied in lung cancer and as their mechanism of action suggests, can be achievable both by COX-dependent and COX-independent pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hillario NOE, Terrari MT, Len CA (2006) Nonsteroidal anti-inflammatory drugs: cyclooxygenase 2 inhibitors. J Pediatr 82:206–212

    Article  Google Scholar 

  2. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  Google Scholar 

  3. Harris RE, Beebe-Donk J, Alshafie GA (2007) Reduced risk of human lung cancer by selective cyclooxygenase 2 (COX-2) blockade: results of a case control study. Int J Biol Sci 3:328–334

    Article  PubMed  CAS  Google Scholar 

  4. Harris RE, Beebe-Donk J, Schuller HM (2002) Chemoprevention of lung cancer by NSAIDs among cigarette smokers. Oncol Rep 9:615–693

    Google Scholar 

  5. Haynes A, Shaik MS, Chatterjee A, Singh M (2003) Evaluation of an aerosolized selective COX-2 inhibitor as a potentiator of doxorubicin in a non-small-cell lung cancer cell line. Pharm Res 20:1485–1495

    Article  PubMed  CAS  Google Scholar 

  6. Hida T, Kozaki K, Ito H, Miyaishi O, Tatematsu Y, Suzuki T, Matsuo K, Sugiura T, Ogawa M, Takahashi T (2002) Significant growth inhibition of human lung cancer cells both in vitro and in vivo by the combined use of a selective cyclooxygenase 2 inhibitor, JTE-522 and conventional anticancer agents. Clin Cancer Res 8:2443–2447

    PubMed  CAS  Google Scholar 

  7. Zimmermann KC, Sarbia M, Weber AA, Brochard F, Gabbert HE, Schror K (1999) Cyclooxygenase expression in human carcinoma. Cancer Res 59:486–492

    Google Scholar 

  8. Seo SK, Lee HC, Woo SH, Jin HO, Yoo DH, Lee SJ, An S, Choe TB, Park MJ, Hong SI, Park IC, Rhee CH (2007) Sulindac-derived reactive oxygen species induce apoptosis of human multiple myeloma cells via p38 mitogen activated protein kinase induced mitochondrial dysfunction. Apoptosis 12:195–209

    Article  PubMed  CAS  Google Scholar 

  9. Karthikeyan R, Manivasagam T, Anantharaman P, Balasubramanian T, Somasundaram ST (2011) Chemopreventive effect of Padinaboergesenii extracts on ferric nitrilotriacetate (Fe-NTA)-induced oxidative damage in Wistar rats. J Appl Phycol 23:257–263

    Article  CAS  Google Scholar 

  10. Lennon SV, Martin SJ, Cotter TG (1991) Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif 24:203–214

    Article  PubMed  CAS  Google Scholar 

  11. Williams JL, Nath N, Chen J, Hundley TR, Gao J, Kopelovich L, Kashfi K, Rigas B (2003) Growth inhibition of human colon cancer cells by nitric oxide (NO)-donating aspirin is associated with cyclooxygenase-2 induction and beta-catenin/T-cell factor signaling, nuclear factor-kappaB, and NO synthase 2 inhibition: implications for chemoprevention. Cancer Res 63:7613–7618

    PubMed  CAS  Google Scholar 

  12. Chandel NS, Trzyna WC, McClintock DS, Schumacker PT (2002) Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J Immunol 165:1013–1021

    Google Scholar 

  13. Spiegel A, Hundley TR, Chen J, Gao J, Ouyang N, Liu X, Go MF, Tsioulias GJ, Kashfi K, Rigas B (2005) NO-donating aspirin inhibits both the expression and catalytic activity of inducible nitric oxide synthase in HT-29 human colon cancer cells. Biochem Pharmacol 70:93–100

    Article  Google Scholar 

  14. Keith A, Alexander J, Lewis, Julian L, Martin R, Roberts, Peter W (2008) Apoptosis: programmed cell death eliminates unwanted cells. In: Anderson M, Granum S (eds) Molecular biology of the cell, 5th edn. Garland Science, New York, p 1115

  15. Croce CM (2008) Oncogenes and cancer. N Eng J Med 358:502–511

    Article  CAS  Google Scholar 

  16. Saini RK, Sanyal SN (2008) Pulmonary carcinogenesis in mice with a single intratracheal instillation of 9,10-dimethyl benz(a)anthracene. Drug Chem Toxicol 31:459–471

    Article  PubMed  CAS  Google Scholar 

  17. Sodini D, Baragatti B, Barogi S, Laubach VE, Coceani F (2008) Indomethacin promotes nitric oxide function in the ductus arteriosus in the mouse. Brit J Pharmacol 153:1631–1640

    Article  CAS  Google Scholar 

  18. Riendeau D, Percival MD, Brideau C, Charleson S, Dube D, Ethier D, Falguryret JP, Friesen RW, Gordon R, Greig G, Guay J, Mancini J, Ouellet M, Wong E, Xu L, Boyce S, Visco D, Girard Y, Prasit P, Zamboni R, Rodger W, Gresser M, Ford-Hutchinson AW, Young RN, Chan CC (2001) Etoricoxib (MK-0663): preclinical profile and comparison with other agents that selectively inhibit cyclooxygenase-2. J Pharmacol Exp Ther 296:558–566

    PubMed  CAS  Google Scholar 

  19. Pearse AGE (1968) Histochemistry, theoretical and applied, vol 1, 3rd edn. Churchill Livingstone, London, p 660

    Google Scholar 

  20. Sambrook J, Fritsch EF, Maniatis T (1998) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, p 192

    Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  22. Mittal N, Sanyal SN (2010) Inflammatory response of lung derived cells in rat pups following intratracheal surfactant instillation. Am J Biomed Sci 2:239–247

    Article  CAS  Google Scholar 

  23. Baker AJ, Mooney A, Hughes J, Lombardi D, Johnson RJ, Savill J (1994) Mesangial cell apoptosis: the major mechanism for resolution of glomerular hypercellularity in experimental mesangial proliferative nephritis. J Clin Invest 94:2105–2116

    Article  PubMed  CAS  Google Scholar 

  24. Cossarizza A, Salvioli S (2001) Flow cytometric analysis of mitochondrial membrane potential using JC-1. Curr Protoc Cytom Chapter 9:Unit 9.14

    Google Scholar 

  25. LeBel CP, Ischiopoulos H, Bondy SC (1992) Evaluation of the probe 2,7-dichlorofluorescein as indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  PubMed  CAS  Google Scholar 

  26. Stuehr DJ, Marletta MA (1987) Synthesis of nitrite and nitrate in murine macrophage cell lines. Cancer Res 47:5590–5594

    PubMed  CAS  Google Scholar 

  27. Lehrach H, Diamond D, Wozney JM, Boedtker H (1977) mRNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16:4743–4751

    Article  PubMed  CAS  Google Scholar 

  28. Thakur P, Sanyal SN (2010) Induction of pulmonary carcinogenesis in Wistar rats by a single dose of 9,10 dimethylbenz(a)anthracene (DMBA) and the chemopreventive role of diclofenac. Exp Mol Pathol 88:394–400

    Article  PubMed  CAS  Google Scholar 

  29. Setia S, Vaish V, Sanyal SN (2012) Chemopreventive effects of NSAIDs as inhibitors of cyclooxygenase-2 and inducers of apoptosis in experimental lung carcinogenesis. Mol Cell Biochem. doi:10.1007/s11010-012-1286-y

  30. Thakur P, Sanyal SN (2010) Chemopreventive action of diclofenac in dimethylbenzanthracene induced lung cancer in female wistar rat. J Environ Pathol Toxicol Oncol 29:255–265

    Article  PubMed  CAS  Google Scholar 

  31. Saini RK, Sanyal SN (2009) Chemopreventive effect of nonsteroidal anti-inflammatory drugs on 9,10-dimethylbenz[a]anthracene-induced lung carcinogenesis in mice. Oncol Res 17:1–100

    Article  Google Scholar 

  32. Fleury C, Mignotte B, Vayassiere JL (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141

    Article  PubMed  CAS  Google Scholar 

  33. Jabs T (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol 57:231–245

    Article  PubMed  CAS  Google Scholar 

  34. Mookerjee A, Basu JM, Majumder S, Chatterjee S, Panda GS, Dutta P, Pal S, Mukherjee P, Efferth T, Roy S, Choudhuri SK (2006) A novel copper complex induces ROS generation in doxorubicin resistant Ehrlich ascitis carcinoma cells and increases activity of antioxidant enzymes in vital organs in vivo. BMC Cancer 6:1471–2407

    Article  Google Scholar 

  35. Sanders LM, Henderson CE, Hong MY, Barhoumi R, Burghardt RC, Wang N, Spinka CM, Carroll RJ, Turner ND, Chapkin RS, Lupton JR (2004) An increase in reactive oxygen species by dietary fish oil coupled with the attenuation of antioxidant defenses by dietary pectin enhances rat colonocyte apoptosis. J Nutr 134:3233–3238

    PubMed  CAS  Google Scholar 

  36. Mungrue IN, Husain M, Stewart DJ (2002) The role of NOS in heart failure: lessons from murine genetic models. Heart Fail Rev 7:407–422

    Article  PubMed  CAS  Google Scholar 

  37. Kim HS, Yoon SK, Joo CK (2001) The expression of multiple cytokines and inducible nitric oxide synthase in experimental melanin-protein-induced uveitis. Ophthalmic Res 33:329–335

    Article  PubMed  CAS  Google Scholar 

  38. Ramasamy K, Dwyer-Nield LD, Serkova NJ, Hasebroock KM, Tyagi A, Raina K, Singh RP, Malkinson AM, Agarwal R (2011) Silibinin prevents lung tumorigenesis in wild-type but not in iNOS−/− mice: potential of real-time micro-CT in lung cancer chemoprevention studies. Clin Cancer Res 17:753–761

    Article  PubMed  CAS  Google Scholar 

  39. Xu W, Liu L, Charles IG (2002) Microencapsulated iNOS- expressing cells cause tumor suppression in mice. FASEB J 16:213–215

    PubMed  CAS  Google Scholar 

  40. Venuraju SM, Yerramasu A, Corder R, Lahiri A (2010) Osteoprotegerin as a predictor of coronary artery disease and cardiovascular mortality and morbidity. J Am Coll Cardiol 55:2049–2061

    Article  PubMed  CAS  Google Scholar 

  41. Lieb W, Gona P, Larson MG, Massaro JM, Lipinska I, Keaney JF, Rong J, Corey D, Hoffmann U, Fox CS, Vasan RS, Benjamin EJ, O’Donnell CJ, Kathiresan S (2010) Biomarkers of the osteoprotegerin pathway: clinical correlates, subclinical disease, incident cardiovascular disease, and mortality. Arterioscler Thromb Vasc Biol 30:1849–1854

    Article  PubMed  CAS  Google Scholar 

  42. Jacobs MD, Harrison SC (1998) Structure of an IκBalpha/NF-κB complex. Cell 95:749–758

    Article  PubMed  CAS  Google Scholar 

  43. Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG, Edwards SW, McDowell HP, Unitt JF, Sullivan E, Grimley R, Benson N, Broomhead D, Kell DB, White MR (2004) Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306:704–708

    Article  PubMed  CAS  Google Scholar 

  44. Johnson DG, Walker CL (1999) Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 39:295–312

    Article  PubMed  CAS  Google Scholar 

  45. Stoimenov I, Helleday T (2009) PCNA on the crossroad of cancer. Biochem Soc Trans 37:605–613

    Article  PubMed  CAS  Google Scholar 

  46. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265

    Article  PubMed  CAS  Google Scholar 

  47. Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW, Steele GD, Chen LB (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate forming lipophilic cation JC-1. Proc Natl Acad Sci 88:3671–3675

    Article  PubMed  CAS  Google Scholar 

  48. Susin SA, Zamzami N, Kroemer G (1996) The cell biology of apoptosis: evidence for the implication of mitochondria. Apoptosis 1:231–242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Nath Sanyal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Setia, S., Sanyal, S.N. Downregulation of NF-κB and PCNA in the regulatory pathways of apoptosis by cyclooxygenase-2 inhibitors in experimental lung cancer. Mol Cell Biochem 369, 75–86 (2012). https://doi.org/10.1007/s11010-012-1370-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1370-3

Keywords

Navigation