Skip to main content

Advertisement

Log in

Cyanidin-3-glucoside suppresses TNF-α-induced cell proliferation through the repression of Nox activator 1 in mouse vascular smooth muscle cells: involvement of the STAT3 signaling

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cyanidin-3-glucoside (C3G) is a member of the anthocyanin family which belongs to the flavonoid class and possesses antiatherogenic properties. Many studies have demonstrated the protective effects of C3G on vascular endothelial cells and monocytes, however, the precise effects on vascular smooth muscle cells (VSMCs) have been less thoroughly studied. Hence, we investigated the role of C3G in TNF-α-induced VSMCs proliferation and explored the possible mechanisms. TNF-α stimulated VSMCs proliferation, and pretreatment with C3G inhibited the proliferation in dose- and time-dependent manners. Then, we found that C3G attenuated TNF-α-induced ROS over generation by Dihydroethidium staining. The combination of 50 μM C3G and 100 μM apocynin significantly reduced ROS generation. Moreover, C3G pretreatment significantly suppressed the expression of Nox activator 1, a subunit of NADPH oxidase in mouse VSMCs. C3G also inhibited TNF-α-induced signal transducer and activator of transcription (STAT3) phosphorylation, and the inhibitory effect was more prominent in C3G and apocynin co-pretreated cells than that pretreated with C3G or apocynin alone. Administration of the ROS scavenger catalase (2,000 U/ml) remarkably inhibited TNF-α-induced cell proliferation and STAT3 activation. These data suggest that C3G exerts its antiproliferative effect on TNF-α-induced VSMCs proliferation through inhibiting STAT3 activation by attenuating NoxA1-derived ROS over production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

C3G:

Cyanidin-3-glucoside

DHE:

Dihydroethidium

JAK/STAT:

Janus kinase/signal transducer and activator of transcription

NoxA1:

Nox activator 1

HBSS:

Hank’s balanced salt solution

PVDF:

Polyvinylidene fluoride

ROS:

Reactive oxygen Species

STAT3:

Signal transducer and activator of transcription 3

VSMCs:

Vascular smooth muscle cells

References

  1. Craig WJ (2010) Nutrition concerns and health effects of vegetarian diets. Nutr Clin Pract 25:613–620

    Article  PubMed  Google Scholar 

  2. Ruel G, Couillard C (2007) Evidences of the cardioprotective potential of fruits: the case of cranberries. Mol Nutr Food Res 51:692–701

    Article  PubMed  CAS  Google Scholar 

  3. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N (2000) Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 130:2243–2250

    PubMed  CAS  Google Scholar 

  4. Williams CA, Grayer RJ (2004) Anthocyanins and other flavonoids. Nat Prod Rep 21:539–573

    Article  PubMed  CAS  Google Scholar 

  5. Dell’Agli M, Busciala A, Bosisio E (2004) Vascular effects of wine polyphenols. Cardiovasc Res 63:593–602

    Article  PubMed  Google Scholar 

  6. Edirisinghe I, Banaszewski K, Cappozzo J, McCarthy D, Burton-Freeman BM (2011) Effect of black currant anthocyanins on the activation of endothelial nitric oxide synthase (eNOS) in vitro in human endothelial cells. J Agric Food Chem 59:8616–8624

    Article  PubMed  CAS  Google Scholar 

  7. Galvano F, La Fauci L, Vitaglione P, Fogliano V, Vanella L, Felgines C (2007) Bioavailability, antioxidant and biological properties of the natural free-radical scavengers cyanidin and related glycosides. Ann Ist Super Sanita 43:382–393

    PubMed  CAS  Google Scholar 

  8. Stintzing FC, Stintzing AS, Carle R, Frei B, Wrolstad RE (2002) Color and antioxidant properties of cyanidin-based anthocyanin pigments. J Agric Food Chem 50:6172–6181

    Article  PubMed  CAS  Google Scholar 

  9. Kim H, Lee MJ, Kim JE, Park SD, Moon HI, Park WH (2010) Genistein suppresses tumor necrosis factor-alpha-induced proliferation via the apoptotic signaling pathway in human aortic smooth muscle cells. J Agric Food Chem 58:2015–2019

    Article  PubMed  CAS  Google Scholar 

  10. Taniyama Y, Griendling KK (2003) Reactive oxygen species in the vasculature molecular and cellular mechanisms. Hypertension 42:1075–1081

    Article  PubMed  CAS  Google Scholar 

  11. Jovinge S, Hultgardh-Nilsson A, Regnstrom J, Nilsson J (1997) Tumor necrosis factor-alpha activates smooth muscle cell migration in culture and is expressed in the balloon-injured rat aorta. Arterioscler Thromb Vasc Biol 17:490–497

    Article  PubMed  CAS  Google Scholar 

  12. Cai H, Griendling KK, Harrison DG (2003) The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 24:471–478

    Article  PubMed  CAS  Google Scholar 

  13. Krause KH (2004) Tissue distribution and putative physiological function of NOX family NADPH oxidases. Jpn J Infect Dis 57:S28–S29

    PubMed  Google Scholar 

  14. Geiszt M, Lekstrom K, Witta J, Leto TL (2003) Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem 278:20006–20012

    Article  PubMed  CAS  Google Scholar 

  15. Banfi B, Clark RA, Steger K, Krause KH (2003) Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278:3510–3513

    Article  PubMed  CAS  Google Scholar 

  16. Ueyama T, Geiszt M, Leto TL (2006) Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Mol Cell Biol 26:2160–2174

    Article  PubMed  CAS  Google Scholar 

  17. Goetze S, Kintscher U, Kaneshiro K, Meehan WP, Collins A, Fleck E, Hsueh WA, Law RE (2001) TNFalpha induces expression of transcription factors c-fos, Egr-1, and Ets-1 in vascular lesions through extracellular signal-regulated kinases 1/2. Atherosclerosis 159:93–101

    Article  PubMed  CAS  Google Scholar 

  18. Yoshimura A, Naka T, Kubo M (2007) SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 7:454–465

    Article  PubMed  CAS  Google Scholar 

  19. Manea A, Tanase LI, Raicu M, Simionescu M (2010) Jak/STAT signaling pathway regulates nox1 and nox4-based NADPH oxidase in human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 30:105–112

    Article  PubMed  CAS  Google Scholar 

  20. Neumann S, Huse K, Semrau R, Diegeler A, Gebhardt R, Buniatian GH, Scholz GH (2002) Aldosterone and d-glucose stimulate the proliferation of human cardiac myofibroblasts in vitro. Hypertension 39:756–760

    Article  PubMed  CAS  Google Scholar 

  21. Lee HS, Son SM, Kim YK, Hong KW, Kim CD (2003) NAD(P)H oxidase participates in the signaling events in high glucose-induced proliferation of vascular smooth muscle cells. Life Sci 72:2719–2730

    Article  PubMed  CAS  Google Scholar 

  22. Na HK, Surh YJ (2006) Transcriptional regulation via cysteine thiol modification: a novel molecular strategy for chemoprevention and cytoprotection. Mol Carcinog 45:368–380

    Article  PubMed  CAS  Google Scholar 

  23. Abe J, Berk BC (1999) Fyn and JAK2 mediate Ras activation by reactive oxygen species. J Biol Chem 274:21003–21010

    Article  PubMed  CAS  Google Scholar 

  24. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844

    PubMed  CAS  Google Scholar 

  25. Au-Yeung KK, Woo CW, Sung FL, Yip JC, Siow YL, OK (2004) Hyperhomocysteinemia activates nuclear factor-kappaB in endothelial cells via oxidative stress. Circ Res 94:28–36

  26. Speciale A, Canali R, Chirafisi J, Saija A, Virgili F, Cimino F (2010) Cyanidin-3-O-glucoside protection against TNF-alpha-induced endothelial dysfunction: involvement of nuclear factor-kappaB signaling. J Agric Food Chem 58:12048–12054

    Article  PubMed  CAS  Google Scholar 

  27. Wang D, Zou T, Yang Y, Yan X, Ling WH (2011) Cyanidin-3-O-beta-glucoside with the aid of its metabolite protocatechuic acid, reduces monocyte infiltration in apolipoprotein E-deficient mice. Biochem Pharmacol 82:713–719

    Article  PubMed  CAS  Google Scholar 

  28. Iijima K, Yoshizumi M, Hashimoto M, Kim S, Eto M, Ako J, Liang YQ, Sudoh N, Hosoda K, Nakahara K, Toba K, Ouchi Y (2000) Red wine polyphenols inhibit proliferation of vascular smooth muscle cells and downregulate expression of cyclin A gene. Circulation 101:805–811

    PubMed  CAS  Google Scholar 

  29. Oak MH, Bedoui JE, Madeira SV, Chalupsky K, Schini-Kerth VB (2006) Delphinidin and cyanidin inhibit PDGF(AB)-induced VEGF release in vascular smooth muscle cells by preventing activation of p38 MAPK and JNK. Br J Pharmacol 149:283–290

    Article  PubMed  CAS  Google Scholar 

  30. Vendrov AE, Madamanchi NR, Niu XL, Molnar KC, Runge M, Szyndralewiez C, Page P, Runge MS (2010) NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis. J Biol Chem 285:26545–26557

    Article  PubMed  CAS  Google Scholar 

  31. Touyz RM, Cruzado M, Tabet F, Yao G, Salomon S, Schiffrin EL (2003) Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation. Can J Physiol Pharmacol 81:159–167

    Article  PubMed  CAS  Google Scholar 

  32. Ambasta RK, Schreiber JG, Janiszewski M, Busse R, Brandes RP (2006) Noxa1 is a central component of the smooth muscle NADPH oxidase in mice. Free Radic Biol Med 41:193–201

    Article  PubMed  CAS  Google Scholar 

  33. Niu XL, Madamanchi NR, Vendrov AE, Tchivilev I, Rojas M, Madamanchi C, Brandes RP, Krause KH, Humphries J, Smith A, Burnand KG, Runge MS (2010) Nox activator 1: a potential target for modulation of vascular reactive oxygen species in atherosclerotic arteries. Circulation 121:549–559

    Article  PubMed  CAS  Google Scholar 

  34. Seki Y, Kai H, Shibata R, Nagata T, Yasukawa H, Yoshimura A, Imaizumi T (2000) Role of the JAK/STAT pathway in rat carotid artery remodeling after vascular injury. Circ Res 87:12–18

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Key Project of National Natural Science Foundation of China (30730079). All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Ling.

Additional information

S. Fang is the co-first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, X., Fang, S., Xiao, Y. et al. Cyanidin-3-glucoside suppresses TNF-α-induced cell proliferation through the repression of Nox activator 1 in mouse vascular smooth muscle cells: involvement of the STAT3 signaling. Mol Cell Biochem 362, 211–218 (2012). https://doi.org/10.1007/s11010-011-1144-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1144-3

Keywords

Navigation