Skip to main content
Log in

MiR-34a inhibits lymphatic metastasis potential of mouse hepatoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MicroRNAs are small non-coding RNAs that regulate the expression of other genes in a post-transcriptional manner. MiR-34a can induce apoptosis, cell cycle arrest, and senescence. However, its role in tumor progress remains to be fully elucidated. In the present study, the role of miR-34a in lymphatic metastasis was investigated using mouse hepatocarcinoma cell lines Hca-F and Hepa1-6. MicroRNA profiling and Hairpin-RT-PCR analysis showed that the expression level of miR-34a was higher in Hepa1-6 cells (of no metastatic ability) than that in Hca-F cells (of high metastatic ability). Ectopic expression of miR-34a can inhibit cell growth and cell invasion in Hepa1-6 and Hca-F cells. Moreover, miR-34a triggers G1 arrest and down-regulates CyclinD1 and CDK6 in Hepa1-6 cells. Furthermore, we proved that miR-34a decreased adhesion of Hca-F cells to regional lymph node in vitro, reduced lymph nodes-metastasized burden, and inhibited tumor lymph node metastases in vivo. All these results suggest that miR-34a plays multiple tumor suppressive roles in murine hepatocarcinoma, not only inhibiting cell growth by cell cycle arrest, but also repressing metastasis, and may serve as a novel therapeutic target for hepatocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Achen MG, McColl BK, Stacker SA (2005) Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 7:121–127

    Article  CAS  PubMed  Google Scholar 

  2. Minsky BD, Mies C, Rich TA, Recht A (1989) Lymphatic vessel invasion is an independent prognostic factor for survival in colorectal cancer. Int J Radiat Oncol Biol Phys 17:311–318

    Article  CAS  PubMed  Google Scholar 

  3. Foster RS Jr (1996) The biologic and clinical significance of lymphatic metastases in breast cancer. Surg Oncol Clin N Am 5:79–104

    PubMed  Google Scholar 

  4. Fidler IJ (1990) Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res 50:6130–6138

    CAS  PubMed  Google Scholar 

  5. Poste G, Fidler IJ (1980) The pathogenesis of cancer metastasis. Nature 283:139–146

    Article  CAS  PubMed  Google Scholar 

  6. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  7. Medina PP, Slack FJ (2008) microRNAs and cancer: an overview. Cell Cycle 7:2485–2492

    Article  CAS  PubMed  Google Scholar 

  8. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134

    Article  CAS  PubMed  Google Scholar 

  9. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, MacDougald OA, Cho KR, Fearon ER (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17:1298–1307

    Article  CAS  PubMed  Google Scholar 

  10. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–752

    Article  CAS  PubMed  Google Scholar 

  11. Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67:8433–8438

    Article  CAS  PubMed  Google Scholar 

  12. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 104:15472–15477

    Article  CAS  PubMed  Google Scholar 

  13. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6:1586–1593

    Article  CAS  PubMed  Google Scholar 

  14. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26:731–743

    Article  CAS  PubMed  Google Scholar 

  15. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  16. Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, Sun Z, Zheng X (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 582:1564–1568

    Article  CAS  PubMed  Google Scholar 

  17. Wei JS, Song YK, Durinck S, Chen QR, Cheuk AT, Tsang P, Zhang Q, Thiele CJ, Slack A, Shohet J, Khan J (2008) The MYCN oncogene is a direct target of miR-34a. Oncogene 27:5204–5213

    Article  CAS  PubMed  Google Scholar 

  18. Yamakuchi M, Ferlito M, Lowenstein CJ (2008) MiR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 105:13421–13426

    Article  CAS  PubMed  Google Scholar 

  19. Zhou H, Jia L, Wang S, Wang H, Chu H, Hu Y, Cao J, Zhang J (2006) Divergent expression and roles for caveolin-1 in mouse hepatocarcinoma cell lines with varying invasive ability. Biochem Biophys Res Commun 345:486–494

    Article  CAS  PubMed  Google Scholar 

  20. Jia L, Cao J, Wei W, Wang S, Zuo Y, Zhang J (2007) CD147 depletion down-regulates matrix metalloproteinase-11, vascular endothelial growth factor-A expression and the lymphatic metastasis potential of murine hepatocarcinoma Hca-F cells. Int J Biochem Cell Biol 39:2135–2142

    Article  CAS  PubMed  Google Scholar 

  21. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    Article  CAS  PubMed  Google Scholar 

  22. Chen HC, Chen GH, Chen YH, Liao WL, Liu CY, Chang KP, Chang YS, Chen SJ (2009) MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer 100:1002–1011

    Article  CAS  PubMed  Google Scholar 

  23. Deng S, Calin GA, Croce CM, Coukos G, Zhang L (2008) Mechanisms of microRNA deregulation in human cancer. Cell Cycle 7:2643–2646

    Article  CAS  PubMed  Google Scholar 

  24. Inamura K, Togashi Y, Nomura K, Ninomiya H, Hiramatsu M, Satoh Y, Okumura S, Nakagawa K, Ishikawa Y (2007) Let-7 microRNA expression is reduced in bronchioloalveolar carcinoma, a non-invasive carcinoma, and is not correlated with prognosis. Lung Cancer 58:392–396

    Article  PubMed  Google Scholar 

  25. Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, Taccioli C, Zanesi N, Garzon R, Aqeilan RI, Alder H, Volinia S, Rassenti L, Liu X, Liu CG, Kipps TJ, Negrini M, Croce CM (2008) MiR-15a and miR-16–1 cluster functions in human leukemia. Proc Natl Acad Sci USA 105:5166–5171

    Article  CAS  PubMed  Google Scholar 

  26. Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26:5017–5022

    Article  CAS  PubMed  Google Scholar 

  27. Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, Zheng X (2009) MiR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett 275:44–53

    Article  CAS  PubMed  Google Scholar 

  28. Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y, Deguchi T, Ito M (2008) Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun 377:114–119

    Article  CAS  PubMed  Google Scholar 

  29. Bloom J, Cross FR (2007) Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8:149–160

    Article  CAS  PubMed  Google Scholar 

  30. Gutierrez C, Ramirez-Parra E, Castellano MM, del Pozo JC (2002) G (1) to S transition: more than a cell cycle engine switch. Curr Opin Plant Biol 5:480–486

    Article  CAS  PubMed  Google Scholar 

  31. Vermeulen K, Van Bockstaele DR, Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36:131–149

    Article  CAS  PubMed  Google Scholar 

  32. Hermeking H (2007) p53 enters the microRNA world. Cancer Cell 12:414–418

    Article  CAS  PubMed  Google Scholar 

  33. Cheung ST, Chen X, Guan XY, Wong SY, Tai LS, Ng IO, So S, Fan ST (2002) Identify metastasis-associated genes in hepatocellular carcinoma through clonality delineation for multinodular tumor. Cancer Res 62:4711–4721

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from the National Natural Science Foundation of China (No. 30970648) and the Research Fund for the Doctoral Program of Higher Education (No. 20092105110002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Li, S., Qu, J. et al. MiR-34a inhibits lymphatic metastasis potential of mouse hepatoma cells. Mol Cell Biochem 354, 275–282 (2011). https://doi.org/10.1007/s11010-011-0827-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0827-0

Keywords

Navigation