Skip to main content

Advertisement

Log in

Silencing USP22 by asymmetric structure of interfering RNA inhibits proliferation and induces cell cycle arrest in bladder cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The ubiquitin specific peptidase 22 (USP22) is a positive regulator of the growth of tumors. However, little is known about the impact of USP22 knockdown on the growth of human bladder cells. In the present study, we designed a series of asymmetric interfering RNAs (aiRNAs) and compared the efficacy of aiRNA and conventional symmetric interfering RNA (siRNA) in the silencing of USP22 expression and the growth of human bladder EJ cells in vitro and in vivo. In comparison with transfection with the USP22-specific siRNA, transfection with 15/21 aiRNA was more potent in down-regulating the USP22 expression and inhibiting EJ cell proliferation in vitro. Furthermore, transfection with 15/21 aiRNA induced higher frequency of EJ cells arrested at the G0/G1 phases, but did not trigger EJ cell apoptosis. Moreover, transfection with either the siRNA or 15/21 aiRNA up-regulated the expression of p53 and p21, but down-regulated the expression of cyclin E and Mdm2 in EJ cells. The up-regulated p53 expression induced by the specific siRNA or aiRNA was abrogated by induction of Mdm2 over-expression. In addition, treatment with the specific siRNA or aiRNA inhibited the growth of implanted human bladder tumors in mice and the aiRNA had more potent anti-tumor activity in vivo. Therefore, our data suggest that knockdown of USP22 expression by the aiRNA may down-regulate the expression of Mdm2 and cyclin E, resulting in the up-regulated expression of p53 and p21 and leading to cell cycling arrest and inhibition of human bladder EJ cell proliferation. Our findings indicate that the USP22-specific aiRNA may be a novel approach for the intervention of human bladder tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang L, Parkin DM, Whelan S, Zhang S, Chen Y, Lu F, Li L (2005) Statistics on cancer in China: cancer registration in 2002. Eur J Cancer Prev 14:329–335. doi:10.1097/00008469-200508000-00004

    Article  CAS  PubMed  Google Scholar 

  2. Wu XR (2005) Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 5:713–725. doi:10.1038/nrc1697

    Article  CAS  PubMed  Google Scholar 

  3. Leppert JT, Shvarts O, Kawaoka K, Lieberman R, Belldegrun AS, Pantuck AJ (2006) Prevention of bladder cancer: a review. Eur Urol 49:226–234. doi:10.1016/j.eururo.2005.12.011

    Article  CAS  PubMed  Google Scholar 

  4. Latini DM, Lerner SP, Wade SW, Lee DW, Quale DZ (2010) Bladder cancer detection, treatment and outcomes: opportunities and challenges. Urology 75:334–339. doi:10.1016/j.urology.2009.09.051

    Article  PubMed  Google Scholar 

  5. Budman LI, Kassouf W, Steinberg JR (2008) Biomarkers for detection and surveillance of bladder cancer. Can Urol Assoc J 2:212–221

    PubMed  Google Scholar 

  6. Dovedi SJ, Davies BR (2009) Emerging targeted therapies for bladder cancer: a disease waiting for a drug. Cancer Metastasis Rev 28:355–367. doi:10.1007/s10555-009-9192-9

    Article  CAS  PubMed  Google Scholar 

  7. Lee HJ, Kim MS, Shin JM, Park TJ, Chung HM, Baek KH (2006) The expression patterns of deubiquitinating enzymes, USP22 and Usp22. Gene Expr Patterns 6:277–284. doi:10.1016/j.modgep.2005.07.007

    Article  CAS  PubMed  Google Scholar 

  8. Glinsky GV (2005) Death-from-cancer signatures and stem cell contribution to metastatic cancer. Cell Cycle 4:1171–1175

    Article  CAS  PubMed  Google Scholar 

  9. Glinsky GV, Berezovska O, Glinskii AB (2005) Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 115:1503–1521. doi:10.1172/JCI23412

    Article  CAS  PubMed  Google Scholar 

  10. Zhang XY, Pfeiffer HK, Thorne AW, McMahon SB (2008) USP22, an hSAGA subunit and potential cancer stem cell marker, reverses the polycomb-catalyzed ubiquitylation of histone H2A. Cell Cycle 7:1522–1524

    CAS  PubMed  Google Scholar 

  11. Lee KK, Florens L, Swanson SK, Washburn MP, Workman JL (2005) The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex. Mol Cell Biol 25:1173–1182. doi:10.1128/MCB.25.3.1173-1182.2005

    Article  CAS  PubMed  Google Scholar 

  12. Zhang XY, Varthi M, Sykes SM, Phillips C, Warzecha C, Zhu W, Wyce A, Thorne AW, Berger SL, McMahon SB (2008) The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol Cell 29:102–111. doi:10.1016/j.molcel.2007.12.015

    Article  PubMed  Google Scholar 

  13. Yao MC, Chao JL (2005) RNA-guided DNA deletion in Tetrahymena: an RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 39:537–559. doi:10.1146/annurev.genet.39.073003.095906

    Article  CAS  PubMed  Google Scholar 

  14. Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  15. Chang CI, Yoo JW, Hong SW, Lee SE, Kang HS, Sun X, Rogoff HA, Ban C, Kim S, Li CJ, Lee DK (2009) Asymmetric shorter-duplex siRNA structures trigger efficient gene silencing with reduced nonspecific effects. Mol Ther 17:725–732. doi:10.1038/mt.2008.298

    Article  CAS  PubMed  Google Scholar 

  16. Sun X, Rogoff HA, Li CJ (2008) Asymmetric RNA duplexes mediate RNA interference in mammalian cells. Nat Biotechnol 26:1379–1382. doi:10.1038/nbt.1512

    Article  CAS  PubMed  Google Scholar 

  17. Sano M, Sierant M, Miyagishi M, Nakanishi M, Takagi Y, Sutou S (2008) Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection. Nucleic Acids Res 36:5812–5821. doi:10.1093/nar/gkn584

    Article  CAS  PubMed  Google Scholar 

  18. Yu YM, Arora A, Min WX, Roifman CM, Grunebaum E (2009) EdU incorporation is an alternative non-radioactive assay to [H-3]thymidine uptake for in vitro measurement of mice T-cell proliferations. J Immunol Methods 350:29–35. doi:10.1016/j.jim.2009.07.008

    Article  CAS  PubMed  Google Scholar 

  19. Chehrehasa F, Meedeniya ACB, Dwyer P, Abrahamsen G, Mackay-Sim A (2009) EdU, a new thymidine analogue for labelling proliferating cells in the nervous system. J Neurosci Methods 177:122–130. doi:10.1016/j.jneumeth.2008.10.006

    Article  CAS  PubMed  Google Scholar 

  20. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci USA 105:2415–2420. doi:10.1073/pnas.0712168105

    Article  CAS  PubMed  Google Scholar 

  21. Simpson PJ, Moon C, Kleman AM, Connolly E, Ronnett GV (2007) Progressive and inhibitory cell cycle proteins act simultaneously to regulate neurotrophin-mediated proliferation and maturation of neuronal precursors. Cell Cycle 6:1077–1089

    CAS  PubMed  Google Scholar 

  22. Liang QC, Xiong H, Zhao ZW, Jia D, Li WX, Qin HZ, Deng JP, Gao L, Zhang H, Gao GD (2009) Inhibition of transcription factor STAT5b suppresses proliferation, induces G1 cell cycle arrest and reduces tumor cell invasion in human glioblastoma multiforme cells. Cancer Lett 273:164–171. doi:10.1016/j.canlet.2008.08.011

    Article  CAS  PubMed  Google Scholar 

  23. Moll UM, Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1:1001–1008. doi:10.1054/drup.2000.0160

    CAS  PubMed  Google Scholar 

  24. Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB, Oren M (2008) Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol Cell 32:180–189. doi:10.1016/j.molcel.2008.08.031

    Article  CAS  PubMed  Google Scholar 

  25. Chang CI, Hong SW, Kim S, Lee DK (2007) A structure–activity relationship study of siRNAs with structural variations. Biochem Biophys Res Commun 359:997–1003. doi:10.1016/j.bbrc.2007.06.004

    Article  CAS  PubMed  Google Scholar 

  26. Luo Y, Zeng FQ, Gu ZH, Wang L, Wang ZY, Jiang GS, Xiao XY (2009) Quantitative analysis of the putative cancer stem cell marker USP22 mRNA in the transitional cell carcinoma of the bladder and the relationship between USP22 and the grading of tumor. J Clin Urol 24:140–144. doi:10.3969/j.issn.1001-1420.2009.02.022

    Google Scholar 

  27. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  CAS  PubMed  Google Scholar 

  28. Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK (2007) The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J 26:976–986. doi:10.1038/sj.emboj.7601567

    Article  CAS  PubMed  Google Scholar 

  29. Kon N, Kobayashi Y, Li M, Brooks CL, Ludwig T, Gu W (2010) Inactivation of HAUSP in vivo modulates p53 function. Oncogene 29:1270–1279. doi:10.1038/onc.2009.427

    Article  CAS  PubMed  Google Scholar 

  30. Li M, Brooks CL, Kon N, Gu W (2004) A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell 13:879–886

    Article  CAS  PubMed  Google Scholar 

  31. Cao R, Tsukada Y, Zhang Y (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20:845–854. doi:10.1016/j.molcel.2005.12.002

    Article  CAS  PubMed  Google Scholar 

  32. Joo HY, Zhai L, Yang C, Nie S, Erdjument-Bromage H, Tempst P, Chang C, Wang H (2007) Regulation of cell cycle progression and gene expression by H2A deubiquitination. Nature 449:1068–1072. doi:10.1038/nature06256

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants from the National Natural Science Foundation of China (No.30972980) and Hubei province Nature Science Foundation of China (No. 2008cda058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-qing Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, L., Xiao, Xy., Gu, Zh. et al. Silencing USP22 by asymmetric structure of interfering RNA inhibits proliferation and induces cell cycle arrest in bladder cancer cells. Mol Cell Biochem 346, 11–21 (2011). https://doi.org/10.1007/s11010-010-0585-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0585-4

Keywords

Navigation