Skip to main content

Advertisement

Log in

Heregulin-β promotes matrix metalloproteinase-7 expression via HER2-mediated AP-1 activation in MCF-7 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

It has been reported that HER2 level is strongly correlated with the expression of MMP-7 in some carcinomas. HER2 is a preferred heterodimerization partner of EGFR, HER3, and HER4. HER2 overexpression is believed to enhance the signaling from these receptors in response to binding of their specific ligands. In this study, we show that heregulin-β (HRG-β) stimulation remarkably induced MMP-7 promoter activity and significantly enhanced the expression and activity of MMP-7 in MCF-7 cells overexpressing HER2. The expression of c-Jun and c-Fos and the level of the phosphorylated c-Jun were markedly increased after HRG-β treatment in MCF-7/HER2 cells. Increased MMP-7 promoter activity was observed in MCF-7/c-Jun cells. The activity of the MMP-7 promoter induced by HRG-β in MCF-7/HER2 cells could be inhibited by a dominant negative c-Jun mutant TAM67 and by the mutagenesis of the AP-1 site. c-Jun binding to MMP-7 promoter was confirmed by ChIP assays. The data indicate a close link among HRG-β stimulation, HER signaling, and AP-1 activation. Our data suggest that HRG-β-induced MMP-7 expression was regulated by HER2-mediated AP-1 activation in MCF-7 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chambers AF, Matrisian LM (1997) Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89:1260–1270. doi:10.1093/jnci/89.17.1260

    Article  PubMed  CAS  Google Scholar 

  2. Forget MA, Desrosiers RR, Beliveau R (1999) Physiological roles of matrix metalloproteinases: implications for tumor growth and metastasis. Can J Physiol Pharmacol 77:465–480. doi:10.1139/cjpp-77-7-465

    Article  PubMed  CAS  Google Scholar 

  3. Foda HD, Zucker S (2001) Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discov Today 6:478–482. doi:10.1016/S1359-6446(01)01752-4

    Article  PubMed  CAS  Google Scholar 

  4. Saarialho-Kere UK, Crouch EC, Parks WC (1995) Matrix metalloproteinases matrilysin is constitutively expressed in adult human exocrine epithelium. J Invest Dermatol 105:190–196. doi:10.1111/1523-1747.ep12317104

    Article  PubMed  CAS  Google Scholar 

  5. LinksIi M, Yamamoto H, Adachi Y et al (2006) Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med (Maywood) 231:20–27

    Google Scholar 

  6. Yoshimoto M, Itoh F, Yamamoto H et al (1993) Expression of MMP-7 (PUMP-1) mRNA in human colorectal cancers. Int J Cancer 54:614–618. doi:10.1002/ijc.2910540415

    Article  PubMed  CAS  Google Scholar 

  7. Pajouh MS, Nagle RB, Brethnach R et al (1991) Expression of metalloproteinase genes in human prostate cancer. J Cancer Res Clin Oncol 117:114–150. doi:10.1007/BF01613138

    Article  Google Scholar 

  8. Adachi Y, Itoh F, Yamamoto H et al (1998) Matrix metalloproteinase matrilysin (MMP-7) participates in the progression of human gastric and esophageal cancers. Int J Oncol 13:1031–1035

    PubMed  CAS  Google Scholar 

  9. Rudolph-Owen L, Chan R, Muller WJ et al (1998) The matrix metalloproteinase matrilysin influences early stage mammary tumorigenesis. Cancer Res 58:5500–5506

    PubMed  CAS  Google Scholar 

  10. Wilson CL, Heppner KJ, Labosky PA et al (1997) Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci USA 94:1402–1407. doi:10.1073/pnas.94.4.1402

    Article  PubMed  CAS  Google Scholar 

  11. Hynes NE, Stern DF (1994) The biology of erbB-2/neu/HER2 and its role in cancer. Biochim Biophys Acta 1198:165–184

    PubMed  Google Scholar 

  12. Tzahar E, Yarden Y (1998) The ErbB-2/HER2 oncogenic receptor of adenocarcinomas: from orphanhood to multiple stromal ligands. Biochim Biophys Acta 1377:M25–M37

    PubMed  CAS  Google Scholar 

  13. Dougall WC, Qian X, Peterson NC et al (1994) The neu-oncogene: signal transduction pathways, transformation mechanisms and evolving therapies. Oncogene 9:2109–2123

    PubMed  CAS  Google Scholar 

  14. Yu D, Wang SS, Dulski KM et al (1994) c-erbB-2/neu Overexpression enhances metastatic potential of human lung cancer cells by induction of metastasis-associated properties. Cancer Res 54:3260–3266

    PubMed  CAS  Google Scholar 

  15. Tan M, Yao J, Yu D (1997) Overexpression of the c-erbB-2 gene enhanced intrinsic metastasis potential in human breast cancer cells without increasing their transformation abilities. Cancer Res 57:1199–1205

    PubMed  CAS  Google Scholar 

  16. Samanta A, LeVea CM, Dougall WC et al (1994) Ligand and p185c-neu density govern receptor interactions and tyrosine kinase activation. Proc Natl Acad Sci USA 91:1711–1715. doi:10.1073/pnas.91.5.1711

    Article  PubMed  CAS  Google Scholar 

  17. Alimandi M, Wang LM, Bottaro D et al (1997) Epidermal growth factor and betacellulin mediate signal transduction through co-expressed ErbB2 and ErbB3 receptors. EMBO J 16:5608–5617. doi:10.1093/emboj/16.18.5608

    Article  PubMed  CAS  Google Scholar 

  18. Pinkas-Kramarski R, Shelly M, Guarino BC et al (1998) ErbB tyrosine kinases and the two neuregulin families constitute a ligand-receptor network. Mol Cell Biol 18:6090–6101

    PubMed  CAS  Google Scholar 

  19. Karunagaran D, Tzahar E, Beerli RR et al (1996) ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J 15:254–264

    PubMed  CAS  Google Scholar 

  20. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225. doi:10.1016/S0092-8674(00)00114-8

    Article  PubMed  CAS  Google Scholar 

  21. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signaling. Nature 411:355–365. doi:10.1038/35077225

    Article  PubMed  CAS  Google Scholar 

  22. Prenzel N, Fischer OM, Streit S et al (2001) The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8:11–31. doi:10.1677/erc.0.0080011

    Article  PubMed  CAS  Google Scholar 

  23. Lynch CC, Crawford HC, Matrisian LM et al (2004) Epidermal growth factor upregulates matrix metalloproteinase-7 expression through activation of PEA3 transcription factors. Int J Oncol 24:1565–1572

    PubMed  CAS  Google Scholar 

  24. O-charoenrat P, Rhys-Evans PH, Archer DJ et al (2002) C-erbB receptors in squamous cell carcinomas of the head and neck: clinical significance and correlation with matrix metalloproteinases and vascular endothelial growth factors. Oral Oncol 38:73–80. doi:10.1016/S1368-8375(01)00029-X

    Article  PubMed  CAS  Google Scholar 

  25. Zhang Y, Pu X, Shi M et al (2007) Critical role of c-Jun overexpression in liver metastasis of human breast cancer xenograft model. BMC Cancer 7:145–152. doi:10.1186/1471-2407-7-145

    Article  PubMed  Google Scholar 

  26. Yuan G, Qian L, Shi M et al (2008) HER2-dependent MMP-7 expression is mediated by activated STAT3. Cell Signal 20:1284–1291. doi:10.1016/j.cellsig.2008.02.017

    Article  PubMed  CAS  Google Scholar 

  27. Yen L, You XL, Al Moustafa AE et al (2000) Heregulin selectively upregulates vascular endothelial growth factor secretion in cancer cells and stimulates angiogenesis. Oncogene 19:3460–3469. doi:10.1038/sj.onc.1203685

    Article  PubMed  CAS  Google Scholar 

  28. Gaire M, Magbanua Z, McDonnell S et al (1994) Structure and expression of the human gene for the matrix metalloproteinase matrilysin. J Biol Chem 269:2032–2040

    PubMed  CAS  Google Scholar 

  29. Wisdom R (1999) AP-1: one switch for many signals. Exp Cell Res 253:180–185. doi:10.1006/excr.1999.4685

    Article  PubMed  CAS  Google Scholar 

  30. Mendoza-Gamboa E, Siwak DR, Tari AM (2004) The HER2/Grb2/Akt pathway regulates the DNA binding activity of AP-1 in breast cancer cells. Oncol Rep 12:903–908

    PubMed  CAS  Google Scholar 

  31. Brown PH, Alani R, Preis LH et al (1993) Suppression of oncogene-induced transformation by a deletion mutant of c-Jun. Oncogene 8:877–886

    PubMed  CAS  Google Scholar 

  32. Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072:129–157

    PubMed  CAS  Google Scholar 

  33. Hortobagyi GN, Hung MC, Buzdar AU (1999) Recent developments in breast cancer therapy. Semin Oncol 26(4 Suppl 12):11–20

    PubMed  CAS  Google Scholar 

  34. Normanno N, Kim N, Wen D et al (1995) Expression of messenger RNA for amphiregulin, heregulin, and cripto-1, three new members of the epidermal growth factor family, in human breast carcinomas. Breast Cancer Res Treat 35:293–297. doi:10.1007/BF00665981

    Article  PubMed  CAS  Google Scholar 

  35. Holt JT, Gopal TV, Moulton AD et al (1986) Inducible production of c-fos antisense RNA inhibits 3T3 cell proliferation. Proc Natl Acad Sci USA 83:4794–4798. doi:10.1073/pnas.83.13.4794

    Article  PubMed  CAS  Google Scholar 

  36. Liu Y, Ludes-Meyers J, Zhang Y et al (2002) Inhibition of AP-1 transcription factor causes blockade of multiple signal transduction pathways and inhibits breast cancer growth. Oncogene 21:7680–7689. doi:10.1038/sj.onc.1205883

    Article  PubMed  CAS  Google Scholar 

  37. Wisdom R, Johnson RS, Moore C et al (1999) c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J 18:188–197. doi:10.1093/emboj/18.1.188

    Article  PubMed  CAS  Google Scholar 

  38. Hu E, Mueller E, Oliviero S et al (1994) Targeted disruption of the c-fos gene demonstrates c-fos-dependent and independent pathways for gene expression stimulated by growth factors or oncogenes. EMBO J 13:3094–3103

    PubMed  CAS  Google Scholar 

  39. Johnson R, Spiegelman B, Hanahan D et al (1996) Cellular transformation and malignancy induced by ras require c-jun expression. Mol Cell Biol 16:4504–4511

    PubMed  CAS  Google Scholar 

  40. Karin M (1995) The regulation of AP-1 activity by mitogen activated protein kinases. J Biol Chem 270:16483–16486

    PubMed  CAS  Google Scholar 

  41. Joo A, Aburatani H, Morii E et al (2004) STAT3 and MITF cooperatively induce cellular transformation through upregulation of c-fos expression. Oncogene 23:726–734. doi:10.1038/sj.onc.1207174

    Article  PubMed  CAS  Google Scholar 

  42. Bacus SS, Yarden Y, Oren M et al (1996) Neu differentiation factor (heregulin) activates a p53-dependent pathway in cancer cells. Oncogene 12:2535–2547

    PubMed  CAS  Google Scholar 

  43. Carraway KL, Soltoff SP, Cantley LC (1995) Heregulin stimulates mitogenesis and phosphatidylinositol 3-kinase in mouse fibroblasts transfected with erbB2/neu and erbB3. J Biol Chem 270:7111–7116. doi:10.1074/jbc.270.13.7111

    Article  PubMed  CAS  Google Scholar 

  44. Grasso AW, Wen D, Miller CM et al (1997) ErbB kinases and NDF signaling in human prostate cancer cells. Oncogene 15:2705–2716. doi:10.1038/sj.onc.1201447

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 30771981), Beijing Natural Science Foundation (No. 708270), and National Basic Research Program of China (973 Program, No. 2006CB504305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, G., Qian, L., Song, L. et al. Heregulin-β promotes matrix metalloproteinase-7 expression via HER2-mediated AP-1 activation in MCF-7 cells. Mol Cell Biochem 318, 73–79 (2008). https://doi.org/10.1007/s11010-008-9858-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9858-6

Keywords

Navigation