Skip to main content
Log in

Contractions but not AICAR increase FABPpm content in rat muscle sarcolemma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In the present study, it was investigated whether acute muscle contractions in rat skeletal muscle increased the protein content of FABPpm in the plasma membrane. Furthermore, the effect of AICAR stimulation on FAT/CD36 and FABPpm protein content in sarcolemma of rat skeletal muscle was evaluated. Methods Male wistar rats (150 g) were anesthetized and either subjected to in situ electrically induced contractions (hindlimb muscles: 20 min, 10–20 V, 200 ms trains, 100 Hz) or stimulated with the pharmacological activator of AMPK, AICAR. To investigate changes in the content of FABPpm and FAT/CD36 in the plasma membrane by these stimuli, the giant sarcolemma vesicle (GSV) technique was applied. The hindlimb muscles were removed and used for the production of GSV and lysates. All samples were analyzed using the western blotting technique. Results Electrical stimulation of rat hindlimb muscle resulted in an increase in FABPpm protein content in the GSV of 61% (P < 0.05) and in FAT/CD36 protein content in the GSV of 33% (P < 0.05). AICAR stimulation increased FAT/CD36 protein content in GSV by 22% (P < 0.05), whereas FABPpm protein content in GSV was unaffected by AICAR treatment. There was no change in total FAT/CD36 and FABPpm protein expression, measured in lysates with western blotting, by either stimulus. AMPK thr172 and ERK1/2 thr202/204 phosphorylation were significantly increased with muscle contractions (P < 0.05), whereas only AMPK thr172 phosphorylation was increased with AICAR stimulation (P < 0.05). Conclusion These data show that contractions increase both FAT/CD36 and FABPpm protein content in skeletal muscle plasma membrane, whereas only FAT/CD36 protein content is increased when muscle are stimulated with AICAR. This suggests that AMPK is involved in regulation of FAT/CD36, but not FABPpm in skeletal muscle. However, since both ERK1/2 thr202/204 and AMPK thr172 phosphorylation are increased during muscle contractions, the present study cannot rule out that both could play a significant role in regulation of FAT/CD36 and FABPpm during muscle contractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ibrahimi A, Bonen A, Blinn WD, Hajri T, Li X, Zhong K, Cameron R, Abumrad NA (1999) Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J Biol Chem 274:26761–26766. doi:10.1074/jbc.274.38.26761

    Article  PubMed  CAS  Google Scholar 

  2. Febbraio M, Abumrad NA, Hajjar DP et al (1999) A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J Biol Chem 274:19055–19062. doi:10.1074/jbc.274.27.19055

    Article  PubMed  CAS  Google Scholar 

  3. Habets DD, Coumans WA, Voshol PJ et al (2007) AMPK-mediated increase in myocardial long-chain fatty acid uptake critically depends on sarcolemmal CD36. Biochem Biophys Res Commun 355:204–210. doi:10.1016/j.bbrc.2007.01.141

    Article  PubMed  CAS  Google Scholar 

  4. Bonen A, Luiken JJ, Arumugam Y et al (2000) Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. J Biol Chem 275:14501–14508. doi:10.1074/jbc.275.19.14501

    Article  PubMed  CAS  Google Scholar 

  5. Luiken JJ, Coort SL, Willems J et al (2003) Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 52:1627–1634. doi:10.2337/diabetes.52.7.1627

    Article  PubMed  CAS  Google Scholar 

  6. Rose AJ, Richter EA (2005) Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology (Bethesda) 20:260–270. doi:10.1152/physiol.00012.2005

    CAS  Google Scholar 

  7. Clarke DC, Miskovic D, Han XX (2004) Overexpression of membrane-associated fatty acid binding protein (FABPpm) in vivo increases fatty acid sarcolemmal transport and metabolism. Physiol Genomics 17:31–37. doi:10.1152/physiolgenomics.00190.2003

    Article  PubMed  CAS  Google Scholar 

  8. Kiens B, Kristiansen S, Jensen P et al (1997) Membrane associated fatty acid binding protein (FABPpm) in human skeletal muscle is increased by endurance training. Biochem Biophys Res Commun 231:463–465. doi:10.1006/bbrc.1997.6118

    Article  PubMed  CAS  Google Scholar 

  9. Kiens B, Roepstorff C, Glatz JF et al (2004) Lipid-binding proteins and lipoprotein lipase activity in human skeletal muscle: influence of physical activity and gender. J Appl Physiol 97:1209–1218. doi:10.1152/japplphysiol.01278.2003

    Article  PubMed  CAS  Google Scholar 

  10. Koonen DP, Benton CR, Arumugam Y (2004) Different mechanisms can alter fatty acid transport when muscle contractile activity is chronically altered. Am J Physiol Endocrinol Metab 286:E1042–E1049. doi:10.1152/ajpendo.00531.2003

    Article  PubMed  CAS  Google Scholar 

  11. Wojtaszewski JF, MacDonald C, Nielsen JN et al (2003) Regulation of 5′AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab 284:E813–E822

    PubMed  CAS  Google Scholar 

  12. Hutber CA, Hardie DG, Winder WW (1997) Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. Am J Physiol 272:E262–E266

    PubMed  CAS  Google Scholar 

  13. Merrill GF, Kurth EJ, Hardie DG et al (1997) AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 273:E1107–E1112

    PubMed  CAS  Google Scholar 

  14. Winder WW, Hardie DG (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol 270:E299–E304

    PubMed  CAS  Google Scholar 

  15. Rasmussen BB, Winder WW (1997) Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase. J Appl Physiol 83:1104–1109

    PubMed  CAS  Google Scholar 

  16. Winder WW (1998) Malonyl-CoA regulator of fatty acid oxidation in muscle during exercise. Exerc Sport Sci Rev 26:117–132. doi:10.1249/00003677-199800260-00007

    Article  PubMed  CAS  Google Scholar 

  17. Jorgensen SB, Richter EA, Wojtaszewski JF (2006) Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J Physiol 574:17–31. doi:10.1113/jphysiol.2006.109942

    Article  PubMed  Google Scholar 

  18. Roepstorff C, Halberg N, Hillig T et al (2005) Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Am J Physiol Endocrinol Metab 288:E133–E142. doi:10.1152/ajpendo.00379.2004

    Article  PubMed  CAS  Google Scholar 

  19. Shearer J, Fueger PT, Vorndick B et al (2004) AMP kinase-induced skeletal muscle glucose but not long-chain fatty acid uptake is dependent on nitric oxide. Diabetes 53:1429–1435. doi:10.2337/diabetes.53.6.1429

    Article  PubMed  CAS  Google Scholar 

  20. Bonen A, Han XX, Habets DD et al (2007) A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- an AICAR-stimulated fatty acid metabolism. Am J Physiol Endocrinol Metab 292:E1740–E1749. doi:10.1152/ajpendo.00579.2006

    Article  PubMed  CAS  Google Scholar 

  21. Chabowski A, Coort SL, Calles-Escandon J et al (2005) The subcellular compartmentation of fatty acid transporters is regulated differently by insulin and by AICAR. FEBS Lett 579:2428–2432. doi:10.1016/j.febslet.2004.11.118

    Article  PubMed  CAS  Google Scholar 

  22. Richter EA, Cleland PJ, Rattigan S et al (1987) Contraction-associated translocation of protein kinase C in rat skeletal muscle. FEBS Lett 217:232–236. doi:10.1016/0014-5793(87)80669-5

    Article  PubMed  CAS  Google Scholar 

  23. Kristiansen S, Hargreaves M, Richter EA (1996) Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle. Am J Physiol 270:E197–E201

    PubMed  CAS  Google Scholar 

  24. Ploug T, Wojtaszewski J, Kristiansen S et al (1993) Glucose transport and transporters in muscle giant vesicles: differential effects of insulin and contractions. Am J Physiol 264:E270–E278

    PubMed  CAS  Google Scholar 

  25. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85. doi:10.1016/0003-2697(85)90442-7

    Article  PubMed  CAS  Google Scholar 

  26. Hnasko R, Lisanti MP (2003) The biology of caveolae: lessons from caveolin knockout mice and implications for human disease. Mol Interv 3:445–464. doi:10.1124/mi.3.8.445

    Article  PubMed  CAS  Google Scholar 

  27. Jorgensen SB, Nielsen JN, Birk JB et al (2004) The alpha2-5′AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading. Diabetes 53:3074–3081. doi:10.2337/diabetes.53.12.3074

    Article  PubMed  CAS  Google Scholar 

  28. Vavvas D, Apazidis A, Saha AK et al (1997) Contraction-induced changes in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle. J Biol Chem 272:13255–13261. doi:10.1074/jbc.272.20.13255

    Article  PubMed  CAS  Google Scholar 

  29. Wojtaszewski JF, Jorgensen SB, Hellsten Y (2002) Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA)-riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle. Diabetes 51:284–292. doi:10.2337/diabetes.51.2.284

    Article  PubMed  CAS  Google Scholar 

  30. Holloway GP, Lally J, Nickerson JG et al (2007) Fatty acid binding protein facilitates sarcolemmal fatty acid transport but not mitochondrial oxidation in rat and human skeletal muscle. J Physiol 582:393–405. doi:10.1113/jphysiol.2007.135301

    Article  PubMed  CAS  Google Scholar 

  31. Roepstorff C, Steffensen CH, Madsen M et al (2002) Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. Am J Physiol Endocrinol Metab 282:E435–E447

    PubMed  CAS  Google Scholar 

  32. Turcotte LP, Srivastava AK, Chiasson JL (1997) Fasting increases plasma membrane fatty acid-binding protein (FABP(PM)) in red skeletal muscle. Mol Cell Biochem 166:153–158. doi:10.1023/A:1006846907394

    Article  PubMed  CAS  Google Scholar 

  33. Turcotte LP, Swenberger JR, Tucker MZ et al (1999) Training-induced elevation in FABP(PM) is associated with increased palmitate use in contracting muscle. J Appl Physiol 87:285–293

    PubMed  CAS  Google Scholar 

  34. Mu J, Brozinick JT Jr, Valladares O et al (2001) A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 7:1085–1094. doi:10.1016/S1097-2765(01)00251-9

    Article  PubMed  CAS  Google Scholar 

  35. Roy D, Johannsson E, Bonen A et al (1997) Electrical stimulation induces fiber type-specific translocation of GLUT-4 to T tubules in skeletal muscle. Am J Physiol 273:E688–E694

    PubMed  CAS  Google Scholar 

  36. Ryder JW, Fahlman R, Wallberg-Henriksson H et al (2000) Effect of contraction on mitogen-activated protein kinase signal transduction in skeletal muscle: involvement of the mitogen- and stress-activated protein kinase 1. J Biol Chem 275:1457–1462. doi:10.1074/jbc.275.2.1457

    Article  PubMed  CAS  Google Scholar 

  37. Wojtaszewski JF, Mourtzakis M, Hillig T (2002) Dissociation of AMPK activity and ACCbeta phosphorylation in human muscle during prolonged exercise. Biochem Biophys Res Commun 298:309–316. doi:10.1016/S0006-291X(02)02465-8

    Article  PubMed  CAS  Google Scholar 

  38. Turcotte LP, Raney MA, Todd MK (2005) ERK1/2 inhibition prevents contraction-induced increase in plasma membrane FAT/CD36 content and FA uptake in rodent muscle. Acta Physiol Scand 184:131–139. doi:10.1111/j.1365-201X.2005.01445.x

    Article  PubMed  CAS  Google Scholar 

  39. Wojtaszewski JF, Lynge J, Jakobsen AB (1999) Differential regulation of MAP kinase by contraction and insulin in skeletal muscle: metabolic implications. Am J Physiol 277:E724–E732

    PubMed  CAS  Google Scholar 

  40. Chen HC, Bandyopadhyay G, Sajan MP et al (2002) Activation of the ERK pathway and atypical protein kinase C isoforms in exercise- and aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR)-stimulated glucose transport. J Biol Chem 277:23554–23562. doi:10.1074/jbc.M201152200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the skilled technical assistance of Irene Bech Nielsen. Grants; The study was supported by the Commission of the European Communities (Contract no. LSHM-CT-2004-005272 EXGENESIS). The Copenhagen Muscle Research Centre, the Ministry of Food, Agriculture, and Fisheries and the Danish Agency for Science, Technology, and Innovation (Jacob Jeppesen, Peter Albers, and Bente Kiens). Joost Luiken is the recipient of a VIDI-Innovational Research Grant from the Netherlands Organization of Scientific Research (NWO-ZonMw Grant 016.036.305). Jan Glatz is Netherlands Heart Foundation Professor of Cardiac Metabolism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bente Kiens.

Additional information

Submitted as part of the Proceedings of the 6th Lipid Binding Protein Conference, Vancouver 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeppesen, J., Albers, P., Luiken, J.J. et al. Contractions but not AICAR increase FABPpm content in rat muscle sarcolemma. Mol Cell Biochem 326, 45–53 (2009). https://doi.org/10.1007/s11010-008-0006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-0006-0

Keywords

Navigation