Skip to main content
Log in

Adiposity dependent apelin gene expression: relationships with oxidative and inflammation markers

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

It has been reported that apelin functions as an adipokine, which has been associated to obesity and insulin resistance. The objective of this study was to analyze the apelin mRNA expression in white adipose tissue (WAT) from high-fat (Cafeteria) fed rats, in order to examine potential relationships with obesity markers and other related risk factors. Animals fed on the high-fat diet during 56 days increased their body weight, total body fat and WAT depots weights when compared to controls. Apelin subcutaneous mRNA expression was higher in the Cafeteria than in the Control fed group and this increase was partially reversed by dietary vitamin C supplementation. Statistically significant associations between subcutaneous apelin gene expression and almost all the studied variables were identified, being of special interest the correlations found with serum leptin (r = 0.517), liver malondialdehyde (MDA) levels (r = 0.477), and leptin, IRS-3 and IL-1ra retroperitoneal mRNA expression (r = 0.701; r = 0.692 and r = 0.561, respectively). These associations evidence a possible role for apelin in the excessive weight gain induced by high-fat feeding and increased adiposity, insulin-resistance, liver oxidative stress and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tatemoto K, Hosoya M, Habata Y et al (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251:471–476

    Article  PubMed  CAS  Google Scholar 

  2. Lee DK, Cheng R, Nguyen T et al (2000) Characterization of apelin, the ligand for the APJ receptor. J Neurochem 74:34–41

    Article  PubMed  CAS  Google Scholar 

  3. Medhurst AD, Jennings CA, Robbins MJ et al (2003) Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J Neurochem 84:1162–1172

    Article  PubMed  CAS  Google Scholar 

  4. Cheng X, Cheng XS, Pang CC (2003) Venous dilator effect of apelin, an endogenous peptide ligand for the orphan APJ receptor, in conscious rats. Eur J Pharmacol 470:171–175

    Article  PubMed  CAS  Google Scholar 

  5. Reaux A, De Mota N, Skultetyova I et al (2001) Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J Neurochem 77:1085–1096

    Article  PubMed  CAS  Google Scholar 

  6. Taheri S, Murphy K, Cohen M et al (2002) The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats. Biochem Biophys Res Commun 291:1208–1212

    Article  PubMed  CAS  Google Scholar 

  7. Wang G, Anini Y, Wei W et al (2004) Apelin, a new enteric peptide: localization in the gastrointestinal tract, ontogeny, and stimulation of gastric cell proliferation and of cholecystokinin secretion. Endocrinology 145:1342–1348

    Article  PubMed  CAS  Google Scholar 

  8. O’Shea M, Hansen MJ, Tatemoto K et al (2003) Inhibitory effect of apelin-12 on nocturnal food intake in the rat. Nutr Neurosci 6:163–167

    Article  PubMed  CAS  Google Scholar 

  9. Boucher J, Masri B, Daviaud D et al (2005) Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 146:1764–1771

    Article  PubMed  CAS  Google Scholar 

  10. Sorhede Winzell M, Magnusson C, Ahren B (2005) The APJ receptor is expressed in pancreatic islets and its ligand, apelin, inhibits insulin secretion in mice. Regul Pept 131:12–17

    Article  PubMed  CAS  Google Scholar 

  11. Wei L, Hou X, Tatemoto K (2005) Regulation of apelin mRNA expression by insulin and glucocorticoids in mouse 3T3-L1 adipocytes. Regul Pept 132:27–32

    Article  PubMed  CAS  Google Scholar 

  12. Daviaud D, Boucher J, Gesta S et al (2006) TNF alpha up-regulates apelin expression in human and mouse adipose tissue. Faseb J 20:1528–1530

    Article  PubMed  CAS  Google Scholar 

  13. Kralisch S, Lossner U, Bluher M et al (2007) Growth hormone induces apelin mRNA expression and secretion in mouse 3T3-L1 adipocytes. Regul Pept 139:84–89

    Article  PubMed  CAS  Google Scholar 

  14. Berraondo B, Marti A, Duncan JS et al (2000) Up-regulation of muscle UCP2 gene expression by a new beta3-adrenoceptor agonist, trecadrine, in obese (cafeteria) rodents, but down-regulation in lean animals. Int J Obes Relat Metab Disord 24:156–163

    Article  PubMed  CAS  Google Scholar 

  15. Campion J, Martinez JA (2004) Ketoconazole, an antifungal agent, protects against adiposity induced by a cafeteria diet. Horm Metab Res 36:485–491

    Article  PubMed  CAS  Google Scholar 

  16. Lopez IP, Milagro FI, Marti A et al (2005) High-fat feeding period affects gene expression in rat white adipose tissue. Mol Cell Biochem 275:109–115

    Article  PubMed  CAS  Google Scholar 

  17. Milagro FI, Campion J, Martinez JA (2006) Weight gain induced by high-fat feeding involves increased liver oxidative stress. Obesity 14:1118–1123

    PubMed  CAS  Google Scholar 

  18. Campion J, Milagro FI, Fernández D et al (2006) Differential gene expression and adiposity reduction induced by ascorbic acid supplementation in a cafeteria model of obesity. J Physiol Biochem 62:71–80

    Article  PubMed  CAS  Google Scholar 

  19. Margareto J, Aguado M, Oses-Prieto JA et al (2000) A new NPY-antagonist strongly stimulates apoptosis and lipolysis on white adipocytes in an obesity model. Life Sci 68:99–107

    Article  PubMed  CAS  Google Scholar 

  20. Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  PubMed  CAS  Google Scholar 

  21. Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1–research0034.11

    Google Scholar 

  22. Montague CT, Prins JB, Sanders L et al (1998) Depot-related gene expression in human subcutaneous and omental adipocytes. Diabetes 47:1384–1391

    Article  PubMed  CAS  Google Scholar 

  23. Villafuerte BC, Fine JB, Bai Y et al (2000) Expressions of leptin and insulin-like growth factor-I are highly correlated and region-specific in adipose tissue of growing rats. Obes Res 8:646–655

    PubMed  CAS  Google Scholar 

  24. Heinonen MV, Purhonen AK, Miettinen P et al (2005) Apelin, orexin-A and leptin plasma levels in morbid obesity and effect of gastric banding. Regul Pept 130:7–13

    Article  PubMed  CAS  Google Scholar 

  25. Lambin S, van Bree R, Caluwaerts S et al (2007) Adipose tissue in offspring of Lepr(db/+) mice: early-life environment vs. genotype. Am J Physiol Endocrinol Metab 292:E262–E271

    Article  PubMed  CAS  Google Scholar 

  26. Marceau P, Biron S, Hould FS et al (1999) Liver pathology and the metabolic syndrome X in severe obesity. J Clin Endocrinol Metab 84:1513–1517

    Article  PubMed  CAS  Google Scholar 

  27. Day BW, Bergamini S, Tyurina YY et al (1998) Beta-Carotene. An antioxidant or a target of oxidative stress in cells? Subcell Biochem 30:209–217

    PubMed  CAS  Google Scholar 

  28. Kleinz MJ, Davenport AP (2005) Emerging roles of apelin in biology and medicine. Pharmacol Ther 107:198–211

    Article  PubMed  CAS  Google Scholar 

  29. Duryee MJ, Willis MS, Freeman TL et al (2004) Mechanisms of alcohol liver damage: aldehydes, scavenger receptors, and autoimmunity. Front Biosci 9:3145–3155

    Article  PubMed  CAS  Google Scholar 

  30. Tatemoto K, Takayama K, Zou MX et al (2001) The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept 99:87–92

    Article  PubMed  CAS  Google Scholar 

  31. Anai M, Funaki M, Ogihara T et al (1998) Altered expression levels and impaired steps in the pathway to phosphatidylinositol 3-kinase activation via insulin receptor substrates 1 and 2 in Zucker fatty rats. Diabetes 47:13–23

    Article  PubMed  CAS  Google Scholar 

  32. Lopez IP, Marti A, Milagro FI et al (2003) DNA microarray analysis of genes differentially expressed in diet-induced (cafeteria) obese rats. Obes Res 11:188–194

    Article  PubMed  CAS  Google Scholar 

  33. Perez-Echarri N, Perez-Matute P, Martinez JA et al (2005) Serum and gene expression levels of leptin and adiponectin in rats susceptible or resistant to diet-induced obesity. J Physiol Biochem 61:333–342

    Article  PubMed  CAS  Google Scholar 

  34. Somm E, Cettour-Rose P, Asensio C et al (2006) Interleukin-1 receptor antagonist is upregulated during diet-induced obesity and regulates insulin sensitivity in rodents. Diabetologia 49:387–393

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank to Línea Especial (LE/97) from the University of Navarra, Navarra Government funds from 2000, as well as to the Comunidad de Trabajo de los Pirineos CTP (Navarra) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Díaz, D., Campión, J., Milagro, F.I. et al. Adiposity dependent apelin gene expression: relationships with oxidative and inflammation markers. Mol Cell Biochem 305, 87–94 (2007). https://doi.org/10.1007/s11010-007-9531-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9531-5

Keywords

Navigation