Skip to main content

Advertisement

Log in

TAT-Mediated Delivery of Human Alanine:Glyoxylate Aminotransferase in a Cellular Model of Primary Hyperoxaluria Type I

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Defects in liver peroxisomal alanine:glyoxylate aminotransferase (AGT), as a consequence of inherited mutations on the AGXT gene, lead to primary hyperoxaluria type I (PH1), a rare metabolic disorder characterized by the formation of calcium oxalate stones at first in the urinary tract and then in the whole body. The curative treatments currently available for PH1 are pyridoxine therapy, effective in only 10–30 % of the patients, and liver transplantation, an invasive procedure with potentially serious complications. A valid therapeutic option for PH1 patients would be the development of an enzyme administration therapy. However, the exogenous administration of the missing AGT would require the crossing of the plasma membrane to deliver the protein to liver peroxisomes. In this study, we constructed, purified and characterized the fusion protein of AGT with the membrane-penetrating Tat peptide (Tat-AGT). Although Tat-AGT shows subtle active site conformational changes as compared with untagged AGT, it retains a significant transaminase activity. Western-blot analyses, enzymatic assays and immunofluorescence studies show that active Tat-AGT can be successfully delivered to a mammalian cellular model of PH1 consisting of chinese hamster ovary cells expressing glycolate oxidase (CHO-GO), whereas untagged AGT cannot. Moreover, the intracellular transduced Tat-AGT makes CHO-GO cells able to detoxify endogenously produced glyoxylate to an extent similar to that of CHO-GO cells stably expressing AGT. Altogether, these results show that the Tat peptide is capable of delivering a functional AGT to mammalian cells, thus paving the way for the possibility to use Tat-AGT as an enzyme replacement therapy to counteract PH1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PH1:

Primary hyperoxaluria type I

AGT:

Alanine:glyoxylate aminotransferase

PLP:

Pyridoxal 5′-phosphate

CD:

Circular dichroism

DLS:

Dynamic light scattering

GO:

Glycolate oxidase

CHO-GO:

Chinese hamster ovary cells expressing glycolate oxidase

CHO-GO-AGT:

Chinese hamster ovary cells expressing glycolate oxidase and AGT

References

  • Behnam JT, Williams EL, Brink S, Rumsby G, Danpure CJ (2006) Reconstruction of human hepatocyte glyoxylate metabolic pathways in stably transformed Chinese-hamster ovary cells. Biochem J 394(Pt 2):409–416

    PubMed  CAS  Google Scholar 

  • Bertoldi M, Cellini B, Clausen T, Voltattorni CB (2002) Spectroscopic and kinetic analyses reveal the pyridoxal 5′-phosphate binding mode and the catalytic features of Treponema denticola cystalysin. Biochemistry 41(29):9153–9164

    Article  PubMed  CAS  Google Scholar 

  • Caron NJ, Quenneville SP, Tremblay JP (2004) Endosome disruption enhances the functional nuclear delivery of Tat-fusion proteins. Biochem Biophys Res Commun 319(1):12–20. doi:10.1016/j.bbrc.2004.04.180

    Article  PubMed  CAS  Google Scholar 

  • Cellini B, Bertoldi M, Montioli R, Paiardini A, Borri Voltattorni C (2007) Human wild-type alanine: glyoxylate aminotransferase and its naturally occurring G82E variant: functional properties and physiological implications. Biochem J 408(1):39–50. doi:10.1042/BJ20070637

    Article  PubMed  CAS  Google Scholar 

  • Cellini B, Montioli R, Bianconi S, Lopez-Alonso JP, Voltattorni CB (2008) Construction, purification and characterization of untagged human liver alanine-glyoxylate aminotransferase expressed in Escherichia coli. Protein Pept Lett 15(2):153–159

    Article  PubMed  CAS  Google Scholar 

  • Cellini B, Montioli R, Paiardini A, Lorenzetto A, Voltattorni CB (2009) Molecular insight into the synergism between the minor allele of human liver peroxisomal alanine:glyoxylate aminotransferase and the F152I mutation. J Biol Chem 284(13):8349–8358. doi:10.1074/jbc.M808965200

    Article  PubMed  CAS  Google Scholar 

  • Cellini B, Lorenzetto A, Montioli R, Oppici E, Voltattorni CB (2010a) Human liver peroxisomal alanine:glyoxylate aminotransferase: different stability under chemical stress of the major allele, the minor allele, and its pathogenic G170R variant. Biochimie 92(12):1801–1811. doi:10.1016/j.biochi.2010.08.005

    Article  PubMed  CAS  Google Scholar 

  • Cellini B, Montioli R, Paiardini A, Lorenzetto A, Maset F, Bellini T, Oppici E, Voltattorni CB (2010b) Molecular defects of the glycine 41 variants of alanine glyoxylate aminotransferase associated with primary hyperoxaluria type I. Proc Natl Acad Sci USA 107(7):2896–2901. doi:10.1073/pnas.0908565107

    Article  PubMed  CAS  Google Scholar 

  • Cellini B, Oppici E, Paiardini A, Montioli R (2012) Molecular insights into primary hyperoxaluria type 1 pathogenesis. Front Biosci 17:621–634

    Article  PubMed  CAS  Google Scholar 

  • Cochat P, Hulton SA, Acquaviva C, Danpure CJ, Daudon M, De Marchi M, Fargue S, Groothoff J, Harambat J, Hoppe B, Jamieson NV, Kemper MJ, Mandrile G, Marangella M, Picca S, Rumsby G, Salido E, Straub M, van Woerden CS, OxalEurope (2012) Primary hyperoxaluria Type 1: indications for screening and guidance for diagnosis and treatment. Nephrol Dial Transplant 27(5):1729–1736. doi:10.1093/ndt/gfs078

    Article  PubMed  CAS  Google Scholar 

  • Coulter-Mackie MB, Lian Q (2006) Consequences of missense mutations for dimerization and turnover of alanine:glyoxylate aminotransferase: study of a spectrum of mutations. Mol Genet Metab 89(4):349–359

    Article  PubMed  CAS  Google Scholar 

  • Coulter-Mackie MB, Lian Q (2008) Partial trypsin digestion as an indicator of mis-folding of mutant alanine:glyoxylate aminotransferase and chaperone effects of specific ligands. Study of a spectrum of missense mutants. Mol Genet Metab 94(3):368–374

    Article  PubMed  CAS  Google Scholar 

  • Coulter-Mackie MB, Lian Q, Applegarth DA, Toone J, Waters PJ, Vallance H (2008) Mutation-based diagnostic testing for primary hyperoxaluria type 1: survey of results. Clin Biochem 41(7–8):598–602. doi:10.1016/j.clinbiochem.2008.01.018

    Article  PubMed  CAS  Google Scholar 

  • Daidone F, Montioli R, Paiardini A, Cellini B, Macchiarulo A, Giardina G, Bossa F, Borri Voltattorni C (2012) Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors. PLoS One 7(2):e31610. doi:10.1371/journal.pone.0031610

    Article  PubMed  CAS  Google Scholar 

  • Danpure CJ (2005) Molecular etiology of primary hyperoxaluria type 1: new directions for treatment. Am J Nephrol 25(3):303–310

    Article  PubMed  Google Scholar 

  • Danpure CJ, Jennings PR (1986) Peroxisomal alanine:glyoxylate aminotransferase deficiency in primary hyperoxaluria type I. FEBS Lett 201(1):20–24

    Article  PubMed  CAS  Google Scholar 

  • Danpure CJ, Cooper PJ, Wise PJ, Jennings PR (1989) An enzyme trafficking defect in two patients with primary hyperoxaluria type 1: peroxisomal alanine/glyoxylate aminotransferase rerouted to mitochondria. J Cell Biol 108(4):1345–1352

    Article  PubMed  CAS  Google Scholar 

  • Danpure CJ, Jennings PR, Fryer P, Purdue PE, Allsop J (1994) Primary hyperoxaluria type 1: genotypic and phenotypic heterogeneity. J Inherit Metab Dis 17(4):487–499

    Article  PubMed  CAS  Google Scholar 

  • Deegan PB (2012) Fabry disease, enzyme replacement therapy and the significance of antibody responses. J Inherit Metab Dis 35(2):227–243. doi:10.1007/s10545-011-9400-y

    Article  PubMed  CAS  Google Scholar 

  • di Salvo ML, Safo MK, Contestabile R (2012) Biomedical aspects of pyridoxal 5′-phosphate availability. Front Biosci (Elite Ed) 4:897–913

    Google Scholar 

  • Ferreira GC (1993) Erythroid 5-aminolevulinate synthase and X-linked sideroblastic anemia. J Fla Med Assoc 80(7):481–483

    PubMed  CAS  Google Scholar 

  • Fittipaldi A, Giacca M (2005) Transcellular protein transduction using the Tat protein of HIV-1. Adv Drug Deliv Rev 57(4):597–608. doi:10.1016/j.addr.2004.10.011

    Article  PubMed  CAS  Google Scholar 

  • Fittipaldi A, Ferrari A, Zoppe M, Arcangeli C, Pellegrini V, Beltram F, Giacca M (2003) Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem 278(36):34141–34149. doi:10.1074/jbc.M303045200

    Article  PubMed  CAS  Google Scholar 

  • Fodor K, Wolf J, Erdmann R, Schliebs W, Wilmanns M (2012) Molecular requirements for peroxisomal targeting of alanine-glyoxylate aminotransferase as an essential determinant in primary hyperoxaluria type 1. PLoS Biol 10(4):e1001309. doi:10.1371/journal.pbio.1001309

    Article  PubMed  CAS  Google Scholar 

  • Giardina G, Montioli R, Gianni S, Cellini B, Paiardini A, Voltattorni CB, Cutruzzola F (2011) Open conformation of human DOPA decarboxylase reveals the mechanism of PLP addition to Group II decarboxylases. Proc Natl Acad Sci USA 108(51):20514–20519. doi:10.1073/pnas.1111456108

    Article  PubMed  CAS  Google Scholar 

  • Gump JM, Dowdy SF (2007) TAT transduction: the molecular mechanism and therapeutic prospects. Trends Mol Med 13(10):443–448. doi:10.1016/j.molmed.2007.08.002

    Article  PubMed  CAS  Google Scholar 

  • Hopper ED, Pittman AM, Fitzgerald MC, Tucker CL (2008) In vivo and in vitro examination of stability of primary hyperoxaluria-associated human alanine:glyoxylate aminotransferase. J Biol Chem 283(45):30493–30502

    Article  PubMed  CAS  Google Scholar 

  • Humbert O, Davis L, Maizels N (2012) Targeted gene therapies: tools, applications, optimization. Crit Rev Biochem Mol Biol 47(3):264–281. doi:10.3109/10409238.2012.658112

    Article  PubMed  CAS  Google Scholar 

  • Lumb MJ, Danpure CJ (2000) Functional synergism between the most common polymorphism in human alanine:glyoxylate aminotransferase and four of the most common disease-causing mutations. J Biol Chem 275(46):36415–36422

    Article  PubMed  CAS  Google Scholar 

  • Mdluli K, Booth MP, Brady RL, Rumsby G (2005) A preliminary account of the properties of recombinant human glyoxylate reductase (GRHPR), LDHA and LDHB with glyoxylate, and their potential roles in its metabolism. Biochim Biophys Acta 1753(2):209–216. doi:10.1016/j.bbapap.2005.08.004

    Article  PubMed  CAS  Google Scholar 

  • Monico CG, Olson JB, Milliner DS (2005) Implications of genotype and enzyme phenotype in pyridoxine response of patients with type I primary hyperoxaluria. Am J Nephrol 25(2):183–188

    Article  PubMed  CAS  Google Scholar 

  • Montioli R, Cellini B, Borri Voltattorni C (2011) Molecular insights into the pathogenicity of variants associated with the aromatic amino acid decarboxylase deficiency. J Inherit Metab Dis 34(6):1213–1224. doi:10.1007/s10545-011-9340-6

    Article  PubMed  CAS  Google Scholar 

  • Montioli R, Fargue S, Lewin J, Zamparelli C, Danpure CJ, Borri Voltattorni C, Cellini B (2012) The N-terminal extension is essential for the formation of the active dimeric structure of liver peroxisomal alanine:glyoxylate aminotransferase. Int J Biochem Cell Biol 44(3):536–546. doi:10.1016/j.biocel.2011.12.007

    Article  PubMed  CAS  Google Scholar 

  • Motley A, Lumb MJ, Oatey PB, Jennings PR, De Zoysa PA, Wanders RJ, Tabak HF, Danpure CJ (1995) Mammalian alanine/glyoxylate aminotransferase 1 is imported into peroxisomes via the PTS1 translocation pathway. Increased degeneracy and context specificity of the mammalian PTS1 motif and implications for the peroxisome-to-mitochondrion mistargeting of AGT in primary hyperoxaluria type 1. J Cell Biol 131(1):95–109

    Article  PubMed  CAS  Google Scholar 

  • Muller IB, Wu F, Bergmann B, Knockel J, Walter RD, Gehring H, Wrenger C (2009) Poisoning pyridoxal 5-phosphate-dependent enzymes: a new strategy to target the malaria parasite Plasmodium falciparum. PLoS One 4(2):e4406. doi:10.1371/journal.pone.0004406

    Article  PubMed  Google Scholar 

  • Oppici E, Montioli R, Lorenzetto A, Bianconi S, Borri Voltattorni C, Cellini B (2012) Biochemical analyses are instrumental in identifying the impact of mutations on holo and/or apo-forms and on the region(s) of alanine:glyoxylate aminotransferase variants associated with primary hyperoxaluria type I. Mol Genet Metab 105(1):132–140. doi:10.1016/j.ymgme.2011.09.033

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE, Shantz LM, Coleman CS (1995) Ornithine decarboxylase as a target for chemoprevention. J Cell Biochem Suppl 22:132–138

    Article  PubMed  CAS  Google Scholar 

  • Pittman AM, Lage MD, Poltoratsky V, Vrana JD, Paiardini A, Roncador A, Cellini B, Hughes RM, Tucker CL (2012) Rapid profiling of disease alleles using a tunable reporter of protein misfolding. Genetics. doi:10.1534/genetics.112.143750

    PubMed  Google Scholar 

  • Rapoport M, Salman L, Sabag O, Patel MS, Lorberboum-Galski H (2011) Successful TAT-mediated enzyme replacement therapy in a mouse model of mitochondrial E3 deficiency. J Mol Med (Berl) 89(2):161–170. doi:10.1007/s00109-010-0693-3

    Article  CAS  Google Scholar 

  • Ringe D, Petsko GA (2009) What are pharmacological chaperones and why are they interesting? J Biol 8(9):80

    Article  PubMed  Google Scholar 

  • Rucktaschel R, Girzalsky W, Erdmann R (2011) Protein import machineries of peroxisomes. Biochim Biophys Acta 1808(3):892–900. doi:10.1016/j.bbamem.2010.07.020

    Article  PubMed  Google Scholar 

  • Salido EC, Li XM, Lu Y, Wang X, Santana A, Roy-Chowdhury N, Torres A, Shapiro LJ, Roy-Chowdhury J (2006) Alanine-glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer. Proc Natl Acad Sci USA 103(48):18249–18254

    Article  PubMed  CAS  Google Scholar 

  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285(5433):1569–1572

    Article  PubMed  CAS  Google Scholar 

  • Sloots A, Wels WS (2005) Recombinant derivatives of the human high-mobility group protein HMGB2 mediate efficient nonviral gene delivery. FEBS J 272(16):4221–4236. doi:10.1111/j.1742-4658.2005.04834.x

    Article  PubMed  CAS  Google Scholar 

  • Toro A, Grunebaum E (2006) TAT-mediated intracellular delivery of purine nucleoside phosphorylase corrects its deficiency in mice. J Clin Invest 116(10):2717–2726. doi:10.1172/JCI25052

    Article  PubMed  CAS  Google Scholar 

  • Toro A, Paiva M, Ackerley C, Grunebaum E (2006) Intracellular delivery of purine nucleoside phosphorylase (PNP) fused to protein transduction domain corrects PNP deficiency in vitro. Cell Immunol 240(2):107–115. doi:10.1016/j.cellimm.2006.07.003

    Article  PubMed  CAS  Google Scholar 

  • van den Berg A, Dowdy SF (2011) Protein transduction domain delivery of therapeutic macromolecules. Curr Opin Biotechnol 22(6):888–893. doi:10.1016/j.copbio.2011.03.008

    Article  PubMed  Google Scholar 

  • Vyas PM, Tomamichel WJ, Pride PM, Babbey CM, Wang Q, Mercier J, Martin EM, Payne RM (2012) A TAT-frataxin fusion protein increases lifespan and cardiac function in a conditional Friedreich’s ataxia mouse model. Hum Mol Genet 21(6):1230–1247. doi:10.1093/hmg/ddr554

    Article  PubMed  CAS  Google Scholar 

  • Williams EL, Acquaviva C, Amoroso A, Chevalier F, Coulter-Mackie M, Monico CG, Giachino D, Owen T, Robbiano A, Salido E, Waterham H, Rumsby G (2009) Primary hyperoxaluria type 1: update and additional mutation analysis of the AGXT gene. Hum Mutat 30:910–917

    Article  PubMed  CAS  Google Scholar 

  • Wu F, Christen P, Gehring H (2011) A novel approach to inhibit intracellular vitamin B6-dependent enzymes: proof of principle with human and plasmodium ornithine decarboxylase and human histidine decarboxylase. FASEB J 25(7):2109–2122. doi:10.1096/fj.10-174383

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Roe SM, Hou Y, Bartlam M, Rao Z, Pearl LH, Danpure CJ (2003) Crystal structure of alanine:glyoxylate aminotransferase and the relationship between genotype and enzymatic phenotype in primary hyperoxaluria type 1. J Mol Biol 331(3):643–652

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Lin A, Banerjee R (2008) Kinetic properties of polymorphic variants and pathogenic mutants in human cystathionine gamma-lyase. Biochemistry 47(23):6226–6232. doi:10.1021/bi800351a

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Telethon Foundation (Grant No. GGP 10092).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Cellini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Supplementary material 2 (PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roncador, A., Oppici, E., Montioli, R. et al. TAT-Mediated Delivery of Human Alanine:Glyoxylate Aminotransferase in a Cellular Model of Primary Hyperoxaluria Type I. Int J Pept Res Ther 19, 175–184 (2013). https://doi.org/10.1007/s10989-012-9333-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-012-9333-9

Keywords

Navigation