Skip to main content
Log in

Fluvastatin-induced alterations of skeletal muscle function in hypercholesterolaemic rats

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Although statins, the most widely used drugs in the treatment of hyperlipidaemia, are generally accepted as efficient and safe drugs their side-effects on skeletal muscle have been reported with increasing frequency. The lack of an animal model in which these side effects would consistently be observed is one of the important drawbacks in studying statin associated myopathy. To overcome this and enable the studying of the effects of fluvastatin on skeletal muscles an animal model with high blood cholesterol levels was developed. In these animals cholesterol levels rose more than seven fold (from 1.5 ± 0.1 to 10.7 ± 2.0 mmol/l; n = 15 and 16) with a dramatic increase in low density lipoprotein/high density lipoprotein ratio (from 0.29 ± 0.02 to 1.56 ± 0.17). While the latter was reversed by statin treatment, an elevation in blood creatine kinase (CK) level indicated the presence of muscle wasting. Fibers from m. extensor digitorum longus (EDL) showed significant reduction in cross sectional area in the statin treated groups. Statin treatment also decreased the proliferation and fusion of skeletal myotubes in culture. In line with this, resting intracellular calcium concentration ([Ca2+]i) was reduced in statin treated satellite cells and myotubes. On the other hand, in adult skeletal muscle fibers statin treatment increased resting [Ca2+]i (116 ± 4 nM vs. 151 ± 5 nM; n = 33 and 34) and decreased both twitch and tetanic force both in EDL and m. soleus. In addition, in m. soleus the duration of twitch and tetanic force was shortened. These results clearly indicate that statin administration in these animals results in a myopathy characterized by decreased muscle force and elevated plasma CK level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bar SL, Holmes DT, Frohlich J (2007) Asymptomatic hypothroidism and statin-induced myopathy. Can Fam Physician 53(3):428–431

    PubMed  Google Scholar 

  • Bruckert E, Hayem G, Dejager S, Yau C, Bégaud B (2005) Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients—the PRIMO study. Cardiovasc Drugs Ther 19(6):403–414

    Article  PubMed  CAS  Google Scholar 

  • Buettner C, Lecker SH (2008) Molecular basis for statin-induced muscle toxicity: implications and possibilities. Pharmacogenomics 9(8):1133–1142

    Article  PubMed  CAS  Google Scholar 

  • Cseri J, Szappanos H, Szigeti GP, Csernátony Z, Kovács L, Csernoch L (2002) A purinergic signal transduction pathway in mammalian skeletal muscle cells in culture. Pflügers Archiv 443:731–738

    Article  PubMed  CAS  Google Scholar 

  • Dirks AJ, Jones KM (2006) Statin-induced apoptosis and skeletal myopathy. Am J Physiol Cell Physiol 291(6):C1208–C1212

    Article  PubMed  CAS  Google Scholar 

  • Draeger A, Monastyrskaya K, Mohaupt M, Hoppeler H, Savolainen H, Allemann C, Babiychuk EB (2006) Statin therapy induces ultrastructural damage in skeletal muscle in patients without myalgia. J Pathol 210(1):94–102

    Article  PubMed  CAS  Google Scholar 

  • Draeger A, Sanchez-Freire V, Monastyrskaya K, Hoppeler H, Mueller M, Breil F, Mohaupt MG, Babiychuk EB (2010) Statin therapy and the expression of genes that regulate calcium homeostasis and membrane repair in skeletal muscle. Am J Pathol 177(1):291–299

    Article  PubMed  CAS  Google Scholar 

  • Dreier JP, Endres M (2004) Statin-associated rhabdomyolysis triggered by grapefruit consumption. Neurology 62(4):670

    PubMed  Google Scholar 

  • Fridewald WF, Levy RI, Frederickson DS (1972) Estimation of LDL-cholesterol concentration without use of the preparative ultra-centrifuge. Clin Chem 18:499–502

    Google Scholar 

  • Ghirlanda G, Oradei A, Manto A, Lippa S, Uccioli L, Caputo S, Greco AV, Littarru GP (1993) Evidence of plasma CoQ10-lowering effect by HMG-CoA reductase inhibitors: a double-blind, placebo-controlled study. J Clin Pharmacol 33:226–229

    PubMed  CAS  Google Scholar 

  • Haines TH (2001) Do sterols reduce proton and sodium leaks through lipid bilayers? Prog Lipid Res 40:299–324

    Article  PubMed  CAS  Google Scholar 

  • Harper CR, Jacobson TA (2007) The broad spectrum of statin myopathy: from myalgia to rhabdomyolysis. Curr Opin Lipidol 18(4):401–408

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann P, Török M, Zahno A, Waldhauser KM, Brecht K, Krähenbühl S (2006) Toxicity of statins on rat skeletal muscle mitochondria. Cell Mol Life Sci 63(19–20):2415–2425

    Article  PubMed  CAS  Google Scholar 

  • Kohro T, Yamazaki T (2009) Mechanism of statin-induced myopathy investigated using microarray technology. J Atheroscler Thromb 16(1):30–32

    Article  PubMed  Google Scholar 

  • Krause BR, Newton RS (1995) Lipid-lowering activity of atorvastatin and lovastatin in rodent species: triglyceride-lowering in rats correlates with efficacy in LDL animal models. Atherosclerosis 117(2):237–244

    Article  PubMed  CAS  Google Scholar 

  • Legrand C, Giacomello E, Berthier C, Allard B, Sorrentino V, Jacquemond V (2008) Spontaneous and voltage-activated Ca2+ release in adult mouse skeletal muscle fibres expressing the type 3 ryanodine receptor. J Physiol 586(2):441–457

    Article  PubMed  CAS  Google Scholar 

  • Marcoff L, Thompson PD (2007) The role of coenzyme Q10 in statin-associated myopathy: a systematic review. J Am Coll Cardiol 49:2231–2237. doi:10.1016/j.jacc.2007.02.049

    Article  PubMed  CAS  Google Scholar 

  • Merz CNB, Alberts MJ, Balady GJ, Ballantyne CM et al (2009) ACCF/AHA/ACP 2009 competence and training statement: a curriculum on prevention of cardiovascular disease: a report of the American College of Cardiology Foundation/American Heart Association/American College of Physicians Task Force on Competence and Training (Writing Committee to Develop a Competence and Training Statement on Prevention of Cardiovascular Disease). Circulation 120:e100–e126

    Article  Google Scholar 

  • Obata T, Yonemoti H, Aomine M (2009) The protective effect of fluvastatin on hydroxyl radical generation by inhibiting low-density lipoprotein (LDL) oxidation in the rat myocardium. Microvasc Res 77(2):163–165

    Article  PubMed  CAS  Google Scholar 

  • Oddoux S, Brocard J, Schweitzer A, Szentesi P, Giannesini B, Brocard J, Fauré J, Pernet-Gallay K, Bendahan D, Lunardi J, Csernoch L, Marty I (2009) Triadin deletion induces impaired skeletal muscle function. J Biol Chem 284(50):34918–34929

    Article  PubMed  CAS  Google Scholar 

  • Pados Gy, Audikovszky M (2007) A statinkezelés biztonságossága. Hyppocrates 9(1):20–25. ISSN 1419-3337

  • Ranatunga KW (1982) Temperature-dependence of shortening velocity and rate of isometric tension development in rat skeletal muscle. J Physiol 329:465–483

    PubMed  CAS  Google Scholar 

  • Sacher J, Weigl L, Werner M, Szegedi C, Hohenegger M (2005) Delineation of myotoxicity induced by 3-hydroxy-3-methylglutaryl CoA reductase inhibitors in human skeletal muscle cells. J Pharmacol Exp Ther 314(3):1032–1041

    Article  PubMed  CAS  Google Scholar 

  • Sirvent P, Mercier J, Vassort G, Lacampagne A (2005) Simvastatin triggers mitochondria-induced Ca2+ signaling alteration in skeletal muscle. Biochem Biophys Res Commun 329(3):1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Sirvent P, Mercier J, Lacampagne A (2008) New insights into mechanisms of statin-associated myotoxicity. Curr Opin Pharmacol 8(3):333–338

    Article  PubMed  CAS  Google Scholar 

  • Suckow MA, Weisbroth SH, Franklin CL (2006) The Laboratory Rat. Elsevier Inc., San Diego. ISBN: 978-0-12-074903-4

  • Szappanos H, Cseri J, Deli T, Kovács L, Csernoch L (2004) Determination of depolarisation- and agonist-evoked calcium fluxes on skeletal muscle cells in primary culture. J Biochem Biophys Methods 59(1):89–101

    Article  PubMed  CAS  Google Scholar 

  • Thomas L (1992) Labor und diagnose, 4th edn. Die Medizinische Verlagsgesellschaft, Marburg

    Google Scholar 

  • Thompson PD, Clarkson PM, Rosenson RS, National Lipid Association Statin Safety Task Force Muscle Safety Expert Panel (2006) An assessment of statin safety by muscle experts. Am J Cardiol 97(8A):69C–76C

    Article  PubMed  CAS  Google Scholar 

  • Wang CY, Liu PY, Liao JK (2008) Pleiotropic effects of statin therapy: molecular mechanisms and clinical results. Trends Mol Med 14(1):37–44

    Article  PubMed  CAS  Google Scholar 

  • Ward S, Lloyd Jones M, Pandor A, Holmes M, Ara R, Ryan A, Yeo W, Payne M (2007) A systematic review and economic evaluation of statins for the prevention of coronary events. Health Technol Assess 11(14):1–160, iii–iv

    Google Scholar 

  • Yerroum M, Braconnier F, Chariot P (1999) Influence of handling procedures on rat plasma creatine kinase activity. Muscle Nerve 22(8):1119–1121

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank R. Öri for the excellent technical assistance. This work was supported by grants from the Hungarian Scientific Research Found (OTKA K-75604, NK-78398), from the Hungarian Ministry of Health (ETT 186/2009) and from the Hungarian Ministry of Education (K-2009-TÁMOP-4.2.2-08/1/2008-0019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Csernoch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Füzi, M., Palicz, Z., Vincze, J. et al. Fluvastatin-induced alterations of skeletal muscle function in hypercholesterolaemic rats. J Muscle Res Cell Motil 32, 391–401 (2012). https://doi.org/10.1007/s10974-011-9272-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-011-9272-7

Keywords

Navigation