Skip to main content
Log in

Preclinical PK/PD modeling and human efficacious dose projection for a glucokinase activator in the treatment of diabetes

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Human Hexokinase IV, or glucokinase (GK), is a regulator of glucose concentrations in the body. It plays a key role in pancreatic insulin secretion as well as glucose biotransformation in the liver, making it a potentially viable target for treatment of Type 2 diabetes. Allosteric activators of GK have been shown to decrease blood glucose concentrations in both animals and humans. Here, the development of a mathematical model is presented that describes glucose modulation in an ob/ob mouse model via administration of a potent GK activator, with the goal of projecting a human efficacious dose and plasma exposure. The model accounts for the allosteric interaction between GK, the activator, and glucose using a modified Hill function. Based on model simulations using data from the ob/ob mouse and in vitro studies, human projections of glucose response to the GK activator are presented, along with dose and regimen predictions to maintain clinically significant decreases in blood glucose in a Type 2 diabetic patient. This effort serves as a basis to build a detailed mechanistic understanding of GK and its role as a therapeutic target for Type 2 diabetes, and it highlights the benefits of using such an approach in a drug discovery setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agius L, Peak M, Newgard CB, Gomez-Foix AM, Guinovart JJ (1996) Evidence for a role of glucose-induced translocation of glucokinase in the control of hepatic glycogen synthesis. J Biol Chem 271:30479–30486

    Article  PubMed  CAS  Google Scholar 

  2. Matschinsky FM (2005) Glucokinase, glucose homeostasis, and diabetes mellitus. Curr Diab Rep 5:171–176

    Article  PubMed  CAS  Google Scholar 

  3. Matschinsky FM (1990) Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes 39:647–652

    Article  PubMed  CAS  Google Scholar 

  4. Cuesta-Munoz AL, Huopio H, Otonkoski T, Gomez-Zumaquero JM, Näntö-Salonen K, Rahier J, López-Enriquez S, García-Gimeno MA, Sanz P, Soriguer FC, Laakso M (2004) Severe persistent hyperinsulinemic hypoglycemia due to a de novo glucokinase mutation. Diabetes 53:2164–2168

    Article  PubMed  CAS  Google Scholar 

  5. Glaser B, Kesavan P, Heyman M, Davis E, Cuesta A, Buchs A, Stanley CA, Thornton PS, Permutt MA, Matschinsky FM, Herold KC (1998) Familial hyperinsulinism caused by an activating glucokinase mutation. N Engl J Med 338:226–230

    Article  PubMed  CAS  Google Scholar 

  6. Christesen HB, Jacobsen BB, Odili S, Buettger C, Cuesta-Munoz A, Hansen T, Brusgaard K, Massa O, Magnuson MA, Shiota C, Matschinsky FM, Barbetti F (2002) The second activating glucokinase mutation (A456V): implications for glucose homeostasis and diabetes therapy. Diabetes 51:1240–1246

    Article  PubMed  CAS  Google Scholar 

  7. Grimsby J, Sarabu R, Corbett WL, Haynes NE, Bizzarro FT, Coffey JW, Guertin KR, Hilliard DW, Kester RF, Mahaney PE, Marcus L, Qi L, Spence CL, Tengi J, Magnuson MA, Chu CA, Dvorozniak MT, Matschinsky FM, Grippo JF (2003) Allosteric activators of glucokinase: potential role in diabetes therapy. Science 301:370–373

    Article  PubMed  CAS  Google Scholar 

  8. Grimsby J, Berthel SJ, Sarabu R (2008) Glucokinase activators for the potential treatment of type 2 diabetes. Curr Top Med Chem 8:1524–1532

    Article  PubMed  CAS  Google Scholar 

  9. Sarabu R, Berthel SJ, Kester RF, Tilley JW (2011) Novel glucokinase activators: a patent review (2008–2010). Expert Opin Ther Pat 21:13–33

    Article  PubMed  CAS  Google Scholar 

  10. Matschinsky FM, Zelent B, Doliba NM, Kaestner KH, Vanderkooi JM, Grimsby J, Berthel SJ, Sarabu R (2011) Research and development of glucokinase activators for diabetes therapy: theoretical and practical aspects. Handb Exp Pharmacol 203:357–401

    Article  PubMed  CAS  Google Scholar 

  11. Pfefferkorn JA, Guzman-Perez A, Litchfield J, Treadway JL, Pettersen J, Minich ML, Filipski KJ, Jones CS, Tu M, Aspnes G, Risley H, Bian J, Stevens BD, Bourassa P, D’Aquila T, Baker L, Barucci N, Robertson AS, Bourbonais F, Derksen DR, Macdougall M, Cabrera O, Chen J, Lapworth AL, Landro JA, Zavadoski WJ, Atkinson K, Haddish-Berhane N, Tan B, Yao L, Kosa RE, Varma MV, Feng B, Duignan DB, El-Kattan A, Murdande S, Liu S, Ammirati M, Knafels J, Dasilva-Jardine P, Sweet L, Liras S, Rolph TP (2012) Discovery of (S)-6-(3-cyclopentyl-2-(4-(trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotini c acid as a hepatoselective glucokinase activator clinical candidate for treating type 2 diabetes mellitus. J Med Chem 55:1318–1333

    Article  PubMed  CAS  Google Scholar 

  12. Meininger GE, Scott R, Alba M, Shentu Y, Luo E, Amin H, Davies MJ, Kaufman KD, Goldstein BJ (2011) Effects of MK-0941, a novel glucokinase activator, on glycemic control in insulin-treated patients with type 2 diabetes. Diabetes Care 34:2560–2566

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Sjostrand M, Ericsson H, Hartford M, Norjavaara E, Eriksson JW (2013) Pharmacodynamic effects of the oral glucokinase activator AZD6370 after single doses in healthy volunteers assessed with euglycaemic clamp. Diab Obes Metab 15:35–41

    Article  CAS  Google Scholar 

  14. Morrow LA, Leonsson-Zachrisson M, Ericsson H, Wollbratt M, Knutsson M, Hompesch M, Norjavaara E (2012) Safety, pharmacokinetics and pharmacodynamics of multiple-ascending doses of the novel glucokinase activator AZD1656 in patients with type 2 diabetes mellitus. Diab Obes Metab 14:1114–1122

    CAS  Google Scholar 

  15. Ericsson H, Roshammar D, Wollbratt M, Heijer M, Persson M, Ueda S, Leonsson-Zachrisson M, Norjavaara E (2012) Tolerability, pharmacokinetics, and pharmacodynamics of the glucokinase activator AZD1656, after single ascending doses in healthy subjects during euglycemic clamp. Int J Clin Pharmacol Ther 50:765–777

    Article  PubMed  CAS  Google Scholar 

  16. Ericsson H, Sjoberg F, Heijer M, Johansson P, Wollbratt M, Norjavaara E (2012) The glucokinase activator AZD6370 decreases fasting and postprandial glucose in type 2 diabetes mellitus patients with effects influenced by dosing regimen and food. Diab Res Clin Pract 98:436–444

    Article  CAS  Google Scholar 

  17. Kamata K, Mitsuya M, Nishimura T, Eiki J, Nagata Y (2004) Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure 12:429–438

    Article  PubMed  CAS  Google Scholar 

  18. Heredia VV, Thomson J, Nettleton D, Sun S (2006) Glucose-induced conformational changes in glucokinase mediate allosteric regulation: transient kinetic analysis. Biochemistry 45:7553–7562

    Article  PubMed  CAS  Google Scholar 

  19. Ralph EC, Thomson J, Almaden J, Sun S (2008) Glucose modulation of glucokinase activation by small molecules. Biochemistry 47:5028–5036

    Article  PubMed  CAS  Google Scholar 

  20. Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21:457–478

    Article  PubMed  CAS  Google Scholar 

  21. Gloyn AL, Odili S, Buettger C, Njølstad PR, Shiota C, Magnuson MA, Matschinsky FM (2004) Glucokinase and the regulation of blood sugar. Glucokinase and the regulation of blood sugar. In: Matschinsky FM, Magnuson MA (eds) Glucokinase and glycemic disease: from basics to novel therapeutics, vol 16. Karger, Basel, pp 92–109

    Chapter  Google Scholar 

  22. Efanov AM, Barrett DG, Brenner MB, Briggs SL, Delaunois A, Durbin JD, Giese U, Guo H, Radloff M, Gil GS, Sewing S, Wang Y, Weichert A, Zaliani A, Gromada J (2005) A novel glucokinase activator modulates pancreatic islet and hepatocyte function. Endocrinology 146:3696–3701

    Article  PubMed  CAS  Google Scholar 

  23. Ito K, Houston JB (2005) Prediction of human drug clearance from in vitro and preclinical data using physiologically based and empirical approaches. Pharm Res 22:103–112

    Article  PubMed  CAS  Google Scholar 

  24. Hosea NA, Collard WT, Cole S, Maurer TS, Fang RX, Jones H, Kakar SM, Nakai Y, Smith BJ, Webster R, Beaumont K (2009) Prediction of human pharmacokinetics from preclinical information: comparative accuracy of quantitative prediction approaches. J Clin Pharmacol 49:513–533

    Article  PubMed  CAS  Google Scholar 

  25. Sheiner LB, Steimer JL (2000) Pharmacokinetic/pharmacodynamic modeling in drug development. Annu Rev Pharmacol Toxicol 40:67–95

    Article  PubMed  CAS  Google Scholar 

  26. Rooney KF, Snoeck E, Watson PH (2001) Modelling and simulation in clinical drug development. Drug Disc Today 6:802–806

    Article  Google Scholar 

  27. Csajka C, Verotta D (2006) Pharmacokinetic-pharmacodynamic modelling: history and perspectives. J Pharmacokinet Pharmacodyn 33:227–279

    Article  PubMed  CAS  Google Scholar 

  28. Miller P (2005) Role of pharmacoeconomic analysis in R&D decision making: when, where, how? PharmacoEconomics 23:1–12

    Article  PubMed  Google Scholar 

  29. Agoram BM, Martin SW, van der Graaf PH (2007) The role of mechanism-based pharmacokinetic–pharmacodynamic (PK–PD) modelling in translational research of biologics. Drug Disc Today 12:1018–1024

    Article  CAS  Google Scholar 

  30. Mea Danhof (2007) Mechanism-based pharmacokinetic–pharmacodynamic modeling for the prediction of in vivo drug concentration–effect relationships—application in drug candidate selection and lead optimization. In: Triggle DJ, Taylor JB (eds) Comprehensive medicinal chemistry II. Elsevier, Oxford, pp 885–908

    Google Scholar 

  31. Littman BH, Di Mario L, Plebani M, Marincola FM (2007) What’s next in translational medicine? Clin Sci 112:217–227

    Article  PubMed  Google Scholar 

  32. Mankoff SP, Brander C, Ferrone S, Marincola FM (2004) Lost in translation: obstacles to translational medicine. J Transl Med 2:14

    Article  PubMed Central  PubMed  Google Scholar 

  33. Wehling M (2008) Translational medicine: science or wishful thinking? J Transl Med 6:31

    Article  PubMed Central  PubMed  Google Scholar 

  34. Mager DE, Jusko WJ (2008) Development of translational pharmacokinetic-pharmacodynamic models. Clin Pharmacol Ther 83:909–912

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Mager DE, Wyska E, Jusko WJ (2003) Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 31:510–518

    Article  PubMed  CAS  Google Scholar 

  36. Toffolo G, Bergman RN, Finegood DT, Bowden CR, Cobelli C (1980) Quantitative estimation of beta cell sensitivity to glucose in the intact organism: a minimal model of insulin kinetics in the dog. Diabetes 29:979–990

    Article  PubMed  CAS  Google Scholar 

  37. Bergman RN (1989) Lilly lecture 1989. Toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes 38:1512–1527

    Article  PubMed  CAS  Google Scholar 

  38. de Winter W, DeJongh J, Post T, Ploeger B, Urquhart R, Moules I, Eckland D, Danhof M (2006) A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying Type 2 Diabetes Mellitus. J Pharmacokinet Pharmacodyn 33:313–343

    Article  PubMed  CAS  Google Scholar 

  39. Eddy DM, Schlessinger L (2003) Validation of the Archimedes diabetes model. Diabetes Care 26:3102–3110

    Article  PubMed  Google Scholar 

  40. Jauslin PM, Karlsson MO, Frey N (2012) Identification of the mechanism of action of a glucokinase activator from oral glucose tolerance test data in type 2 diabetic patients based on an integrated glucose-insulin model. J Clin Pharmacol 52:1861–1871

    Google Scholar 

  41. Bonadonna RC, Heise T, Arbet-Engels C, Kapitza C, Avogaro A, Grimsby J, Zhi J, Grippo JF, Balena R (2010) Piragliatin (RO4389620), a novel glucokinase activator, lowers plasma glucose both in the postabsorptive state and after a glucose challenge in patients with type 2 diabetes mellitus: a mechanistic study. J Clin Endocrinol Metab 95:5028–5036

    Article  PubMed  CAS  Google Scholar 

  42. Schneck KB, Zhang X, Bauer R, Karlsson MO, Sinha VP (2012) Assessment of glycemic response to an oral glucokinase activator in a proof of concept study: application of a semi-mechanistic, integrated glucose–insulin–glucagon model. J Pharmacokinet Pharmacodyn 40:67–80

    Article  PubMed  CAS  Google Scholar 

  43. Bebernitz GR, Beaulieu V, Dale BA, Deacon R, Duttaroy A, Gao J, Grondine MS, Gupta RC, Kakmak M, Kavana M, Kirman LC, Liang J, Maniara WM, Munshi S, Nadkarni SS, Schuster HF, Stams T, Denny I, Taslimi PM, Vash B, Caplan SL (2009) Investigation of functionally liver selective glucokinase activators for the treatment of type 2 diabetes. J Med Chem 52:6142–6152

    Article  PubMed  CAS  Google Scholar 

  44. Winzell MS, Coghlan M, Leighton B, Frangioudakis G, Smith DM, Storlien LH, Ahrén B (2011) Chronic glucokinase activation reduces glycaemia and improves glucose tolerance in high-fat diet fed mice. Eur J Pharmacol 663:80–86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Jonathan Almaden, Tom Carlson, Sharon Lostracco Johnson, Jocelyn Herrera Zoll, David Looper and Brett Simmons for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Zager.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zager, M.G., Kozminski, K., Pascual, B. et al. Preclinical PK/PD modeling and human efficacious dose projection for a glucokinase activator in the treatment of diabetes. J Pharmacokinet Pharmacodyn 41, 127–139 (2014). https://doi.org/10.1007/s10928-014-9351-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-014-9351-7

Keywords

Navigation