Skip to main content
Log in

Structural and dynamical characterization of the Miz-1 zinc fingers 5–8 by solution-state NMR

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Myc-interacting zinc finger protein-1 (Miz-1) is a BTB/POZ transcription factor that activates the transcription of cytostatic genes, such as p15INK4B or p21CIP1. The C-terminus of Miz-1 contains 13 consensus C2H2 zinc finger domains (ZF). ZFs 1–4 have been shown to interact with SMAD3/4, while the remaining ZFs are expected to bind the promoters of target genes. We have noted unusual features in ZF 5 and the linker between ZFs 5 and 6. Indeed, a glutamate is found instead of the conserved basic residue two positions before the second zinc-coordinating histidine on the ZF 5 helix, and the linker sequence is DTDKE in place of the classical TGEKP sequence. In a canonical ββα fold, such unusual primary structure elements should cause severe electrostatic repulsions. In this context, we have characterized the structure and the dynamics of a Miz-1 construct comprising ZFs 5–8 (Miz 5–8) by solution-state NMR. Whilst ZFs 5, 7 and 8 were shown to adopt the classical ββα fold for C2H2 ZFs, the number of long-range NOEs was insufficient to define a classical fold for ZF 6. We show by using 15N-relaxation dispersion experiments that this lack of NOEs is due to the presence of extensive motions on the μs–ms timescale. Since this negatively charged region would have to be located near the phosphodiester backbone in a DNA complex, we propose that in addition to promoting conformational searches, it could serve as a hinge region to keep ZFs 1–4 away from DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

Miz 5-8:

Miz-1 zinc fingers 5–8

NMR:

Nuclear magnetic resonance spectroscopy

Water-TFA:

0.1 % trifluoroacetic acid in water

ZF:

Zinc finger

References

  • Bai Y, Milne JS, Mayne L, Englander SW (1993) Primary structure effects on peptide group hydrogen exchange. Proteins 17:75–86. doi:10.1002/prot.340170110

    Article  Google Scholar 

  • Barraud P, Schubert M, Allain FH-T (2012) A strong 13C chemical shift signature provides the coordination mode of histidines in zinc-binding proteins. J Biomol NMR 53:93–101. doi:10.1007/s10858-012-9625-6

    Article  Google Scholar 

  • Bédard M, Maltais L, Beaulieu M-E et al (2012) NMR structure note: solution structure of human Miz-1 zinc fingers 8–10. J Biomol NMR. doi:10.1007/s10858-012-9670-1

    MATH  Google Scholar 

  • Berg JM (1988) Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins. Proc Natl Acad Sci USA 85:99–102

    Article  ADS  Google Scholar 

  • Bowen H (2003) Characterization of the Murine Nramp1 promoter: requirements for transactivation by Miz-1. J Biol Chem 278:36017–36026. doi:10.1074/jbc.M304301200

    Article  Google Scholar 

  • Brayer KJ, Segal DJ (2008) Keep your fingers off my DNA: protein–protein interactions mediated by C2H2 zinc finger domains. Cell Biochem Biophys 50:111–131. doi:10.1007/s12013-008-9008-5

    Article  Google Scholar 

  • Brünger AT, Adams PD, Clore GM et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  Google Scholar 

  • Brüschweiler R, Liao X, Wright PE (1995) Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. Science 268:886–889

    Article  ADS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Emerson RO, Thomas JH (2009) Adaptive evolution in zinc finger transcription factors. PLoS Genet 5:e1000325. doi:10.1371/journal.pgen.1000325

    Article  Google Scholar 

  • Eriksson MA, Härd T, Nilsson L (1995) On the pH dependence of amide proton exchange rates in proteins. Biophys J 69:329–339. doi:10.1016/S0006-3495(95)79905-2

    Article  Google Scholar 

  • Farrow NA, Muhandiram R, Singer AU et al (1994) Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33:5984–6003

    Article  Google Scholar 

  • Hyre DE, Klevit RE (1998) A disorder-to-order transition coupled to DNA binding in the essential zinc-finger DNA-binding domain of yeast ADR1. J Mol Biol 279:929–943. doi:10.1006/jmbi.1998.1811

    Article  Google Scholar 

  • Ishima R, Torchia DA (1999) Estimating the time scale of chemical exchange of proteins from measurements of transverse relaxation rates in solution. J Biomol NMR 14:369–372

    Article  Google Scholar 

  • Kornhaber GJ, Snyder D, Moseley HNB, Montelione GT (2006) Identification of zinc-ligated cysteine residues based on 13Cα and 13Cβ chemical shift data. J Biomol NMR 34:259–269. doi:10.1007/s10858-006-0027-5

    Article  Google Scholar 

  • Laskowski RA, Rullmannn JA, MacArthur MW et al (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  Google Scholar 

  • Lipchock J, Loria JP (2009) Millisecond dynamics in the allosteric enzyme imidazole glycerol phosphate synthase (IGPS) from Thermotoga maritima. J Biomol NMR 45:73–84. doi:10.1007/s10858-009-9337-8

    Article  Google Scholar 

  • Luz Z, Meiboom S (1963) Nuclear magnetic resonance study of the protolysis of trimethylammonium ion in aqueous solution—order of the reaction with respect to solvent. J Chem Phys 39:366–370. doi:10.1063/1.1734254

    Article  ADS  Google Scholar 

  • Mittermaier AK, Kay LE (2009) Observing biological dynamics at atomic resolution using NMR. Trends Biochem Sci 34:601–611. doi:10.1016/j.tibs.2009.07.004

    Article  Google Scholar 

  • Mulder FA, Mittermaier A, Hon B et al (2001a) Studying excited states of proteins by NMR spectroscopy. Nat Struct Biol 8:932–935. doi:10.1038/nsb1101-932

    Article  Google Scholar 

  • Mulder FA, Skrynnikov NR, Hon B et al (2001b) Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. J Am Chem Soc 123:967–975

    Article  Google Scholar 

  • Palmer AG (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104:3623–3640. doi:10.1021/cr030413t

    Article  Google Scholar 

  • Palmer AG, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238

    Article  Google Scholar 

  • Peukert K, Staller P, Schneider A et al (1997) An alternative pathway for gene regulation by Myc. EMBO J 16:5672–5686. doi:10.1093/emboj/16.18.5672

    Article  Google Scholar 

  • Potter BM (2005) The six zinc fingers of metal-responsive element binding transcription factor-1 form stable and quasi-ordered structures with relatively small differences in zinc affinities. J Biol Chem 280:28529–28540. doi:10.1074/jbc.M505217200

    Article  Google Scholar 

  • Razin SV, Borunova VV, Maksimenko OG, Kantidze OL (2012) Cys2His2 zinc finger protein family: classification, functions, and major members. Biochem Mosc 77:217–226. doi:10.1134/S0006297912030017

    Article  Google Scholar 

  • Rieping W, Habeck M, Bardiaux B et al (2007) ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23:381–382. doi:10.1093/bioinformatics/btl589

    Article  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738. doi:10.1038/nprot.2010.5

    Article  Google Scholar 

  • Sauvé S, Tremblay L, Lavigne P (2004) The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors. J Mol Biol 342:813–832. doi:10.1016/j.jmb.2004.07.058

    Article  Google Scholar 

  • Schmidt D (2004) Adaptive evolution drives the diversification of zinc-finger binding domains. Mol Biol Evol 21:2326–2339. doi:10.1093/molbev/msh246

    Article  Google Scholar 

  • Seoane J, Pouponnot C, Staller P et al (2001) TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 3:400–408. doi:10.1038/35070086

    Article  Google Scholar 

  • Seoane J, Le H-V, Massagué J (2002) Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419:729–734. doi:10.1038/nature01119

    Article  ADS  Google Scholar 

  • Staller P, Peukert K, Kiermaier A et al (2001) Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 3:392–399. doi:10.1038/35070076

    Article  Google Scholar 

  • Stead MA, Trinh CH, Garnett JA et al (2007) A beta-sheet interaction interface directs the tetramerisation of the Miz-1 POZ domain. J Mol Biol 373:820–826. doi:10.1016/j.jmb.2007.08.026

    Article  Google Scholar 

  • Stogios PJ, Cuesta-Seijo JA, Chen L et al (2010) Insights into strand exchange in BTB domain dimers from the crystal structures of FAZF and Miz1. J Mol Biol 400:983–997. doi:10.1016/j.jmb.2010.05.028

    Article  Google Scholar 

  • Tjandra N, Garrett DS, Gronenborn AM et al (1997) Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy. Nat Struct Biol 4:443–449

    Article  Google Scholar 

  • Vranken WF, Boucher W, Stevens TJ et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696. doi:10.1002/prot.20449

    Article  Google Scholar 

  • Wang C, Grey MJ, Palmer AG (2001) CPMG sequences with enhanced sensitivity to chemical exchange. J Biomol NMR 21:361–366

    Article  Google Scholar 

  • Wanzel M, Russ AC, Kleine-Kohlbrecher D et al (2008) A ribosomal protein L23-nucleophosmin circuit coordinates Miz1 function with cell growth. Nat Cell Biol. doi:10.1038/ncb1764

    Google Scholar 

  • Wishart DS, Bigam CG, Yao J et al (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140

    Article  Google Scholar 

  • Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29:183–212. doi:10.1146/annurev.biophys.29.1.183

    Article  Google Scholar 

  • Zandarashvili L, Vuzman D, Esadze A et al (2012) Asymmetrical roles of zinc fingers in dynamic DNA-scanning process by the inducible transcription factor Egr-1. Proc Natl Acad Sci. doi:10.1073/pnas.1121500109

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science and Engineering Research Council (NSERC) of Canada (grant to P.L. and studentships to M.B. and D.B.) and by the Regroupement stratégique sur la fonction, la structure et l’ingénierie des protéines (PROTEO). D.B. also acknowledges PROTEO for the award of graduate studentship. The authors thank Dr. Frank Hänel (Hans-Knöll-Institut für Naturstoff-Forschung e.V, Germany) for kindly providing us with the Miz-1 cDNA, Dr. Yves L. Dory (Université de Sherbrooke, Canada) for giving access and advice to use his HPLC system, Dr. Jean-François Naud for the initial cloning and Dr. Martin Montagne for his helpful comments on the manuscript. Finally, we thank Prof. Jim Omichinski (U. de Montréal) for his help with the refolding protocol of Zinc Fingers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Lavigne.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 75 kb)

Supplementary material 2 (EPS 350 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernard, D., Bédard, M., Bilodeau, J. et al. Structural and dynamical characterization of the Miz-1 zinc fingers 5–8 by solution-state NMR. J Biomol NMR 57, 103–116 (2013). https://doi.org/10.1007/s10858-013-9770-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9770-6

Keywords

Navigation