Skip to main content
Log in

Media-based effects on the hydrolytic degradation and crystallization of electrospun synthetic-biologic blends

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Tissue engineering scaffold degradation in aqueous environments is a widely recognized factor determining the fate of the associated anchorage-dependent cells. Electrospun blends of synthetic polycaprolactone (PCL) and a biological polymer, gelatin, of 25, 50, and 75 wt% were investigated for alterations in crystallinity, microstructure and morphology following widely used in vitro biological exposures. To our knowledge, the effects of these different aqueous-based biological media compositions on the degradation of these blends have never been directly compared. X-ray diffraction (XRD) analysis exposed that differences in PCL crystallinity were observed following exposures to phosphate buffered solution (PBS), Dulbecco’s modified eagle medium (DMEM) cell culture media, and DI water following 7 days of exposure at 37 °C. XRD data suggested that in vitro medium exposures aid in providing chain mobility and rearrangement due to hydrolytic degradation of the gelatin phase, allowing previously constrained, poorly crystalline PCL regions to achieve more intense reflections resulting in the presence of crystalline peaks. The dry, as-spun modulus of relatively soft 100 % PCL fibers was approximately 10 % of any gelatin-containing composition. Tensile testing results indicate that hydrated gelatin containing scaffolds on average had a fivefold increase in elongation compared to as-spun scaffolds. After 24-h of aqueous exposure, the elastic modulus decreased in proportion to increasing gelatin content. After 1 day of exposure, the 75 and 100 % gelatin compositions largely ceased to display measurable values of modulus, elongation or tensile strength due to considerable hydrolytic degradation. On a relative basis, common aqueous in vitro medium exposures (deionized water, PBS, and DMEM) resulted in significantly divergent amounts of crystalline PCL, overall microstructure and fiber morphology in the blended compositions, subsequently ‘shielding’ scaffolds from significant changes in mechanical properties after 24-h of exposure. Understanding electrospun PCL-gelatin scaffold dynamics in different aqueous-based cell culture medias enables the ability to tailor scaffold composition to ‘tune’ degradation rate, microstructure, and long-term mechanical stability for optimal cellular growth, proliferation, and maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Drilling S, Gaumer J, Lannutti J. Fabrication of burst pressure competent vascular grafts via electrospinning: effects of microstructure. J Biomed Mater Res Part A. 2009;88A:923–34.

    Article  Google Scholar 

  2. Gaumer J, Prasad A, Lee D, Lannutti J. Source-to-ground distance and the mechanical properties of electrospun fiber. Acta Biomater. 2009;5:1552–61.

    Article  Google Scholar 

  3. Baji A, Wong SC, Liu TX, Li TC, Srivatsan TS. Morphological and X-ray diffraction studies of crystalline hydroxyapatite-reinforced polycaprolactone. J Biomed Mater Res B Appl Biomater. 2007;81B:343–50.

    Article  Google Scholar 

  4. R Duling, R Dupaix, N Katsube, J Lannutti. Mechanical characterization of electrospun polycaprolactone (PCL): a potential scaffold for tissue engineering. J Biomech Eng. 2008;130:011006.

    Google Scholar 

  5. Del Gaudio C, Filippini P, Construsciere V, Di Federico E, Bianco A, Grigioni M. Assessment of electrospun PCL scaffold for tissue engineering. Int J Artif Organs. 2006;29:537.

    Google Scholar 

  6. Johnson J, Ghosh A, Lannutti J. Microstructure-property relationships in a tissue engineering scaffold. J Appl Polym Sci. 2007;104:2919–27.

    Article  Google Scholar 

  7. Bolgen N, Menceloglu YZ, Acatay K, Vargel I, Piskin E. In vitro and in vivo degradation of non-woven materials made of poly(epsilon-caprolactone) nanofibers prepared by electrospinning under different conditions. J Biomater Sci-Polym Ed. 2005;16:1537–55.

    Article  Google Scholar 

  8. Dumas V, Perrier A, Malaval L, Laroche N, Guignandon A, Vico L, Rattner A. The effect of dual frequency cyclic compression on matrix deposition by osteoblast-like cells grown in 3D scaffolds and on modulation of VEGF variant expression. Biomaterials. 2009;30:3279–88.

    Article  Google Scholar 

  9. Li Y, Zhao ZH, Song JL, Feng Y, Wang Y, Li XY, Liu YR, Yang P. Cyclic force upregulates mechano-growth factor and elevates cell proliferation in 3D cultured skeletal myoblasts. Arch Biochem Biophys. 2009;490:171–6.

    Article  Google Scholar 

  10. Rath B, Nam J, Knobloch TJ, Lannutti JJ, Agarwal S. Compressive forces induce osteogenic gene expression in calvarial osteoblasts. J Biomech. 2008;41:1095–103.

    Article  Google Scholar 

  11. Deitzel JM, Kosik W, McKnight SH, Tan NCB, DeSimone JM, Crette S. Electrospinning of polymer nanofibers with specific surface chemistry. Polymer. 2002;43:1025–9.

    Article  Google Scholar 

  12. Wong JY, Leach JB, Brown XQ. Balance of chemistry, topography, and mechanics at the cell-biomaterial interface: issues and challenges for assessing the role of substrate mechanics on cell response. Surf Sci. 2004;570:119–33.

    Article  Google Scholar 

  13. Powell H, Lannutti J. Nanofibrillar surfaces via reactive ion etching. Langmuir. 2003;19:9071–8.

    Article  Google Scholar 

  14. Powell HM, Kniss DA, Lannutti JJ. Nanotopographic control of cytoskeletal organization. Langmuir. 2006;22:5087–94.

    Article  Google Scholar 

  15. Xie Y, Sproule T, Li Y, Powell H, Lannutti JJ, Kniss DA. Nanoscale modifications of PET polymer surfaces via oxygen plasma discharge yield minimal changes in attachment and growth of mammalian epithelial and mesenchymal cells in vitro. J Biomed Mater Res. 2002;61:234–45.

    Article  Google Scholar 

  16. Johnson J, Niehaus A, Nichols S, Lee D, Koepsel J, Anderson D, Lannutti J. Electrospun PCL in vitro: a microstructural basis for mechanical property changes. J Biomater Sci Polym Ed. 2009;20:467–81.

    Article  Google Scholar 

  17. Courtney T, Sacks MS, Stankus J, Guan J, Wagner WR. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials. 2006;27:3631–8.

    Google Scholar 

  18. Stankus JJ, Guan JJ, Fujimoto K, Wagner WR. Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials. 2006;27:735–44.

    Article  Google Scholar 

  19. Kang XH, Xie YB, Powell HM, Lee LJ, Belury MA, Lannutti JJ, Kniss DA. Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds. Biomaterials. 2007;28:450–8.

    Article  Google Scholar 

  20. Martins A, Araujo JV, Reis RL, Neves NM. Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine. 2007;2:929–42.

    Article  Google Scholar 

  21. Powell HM, Boyce ST. Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes. J Biomed Mater Res Part A. 2008;84A:1078–86.

    Article  Google Scholar 

  22. Powell HM, Boyce ST. Engineered human skin fabricated using electrospun collagen-PCL BLends: morphogenesis and mechanical properties. Tissue Eng Part A. 2009;15(8):2177–87.

    Article  Google Scholar 

  23. Wang F, Li ZQ, Lannutti JL, Wagner WR, Guan JJ. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering. Acta Biomater. 2009;5:2901–12.

    Article  Google Scholar 

  24. Wang F, Li ZQ, Tamama K, Sen CK, Guan JJ. Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation. Biomacromolecules. 2009;10:2609–18.

    Article  Google Scholar 

  25. Bhattarai SR, Bhattarai N, Yi HK, Hwang PH, Cha DI, Kim HY. Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials. 2004;25:2595–602.

    Article  Google Scholar 

  26. Lannutti J, Reneker D, Ma T, Tomasko D, Farson D. Electrospinning for tissue engineering scaffolds. Mater Sci Eng C. 2007;27:504–9.

    Article  Google Scholar 

  27. Bianco A, Di Federico E, Moscatelli I, Camaioni A, Armentano I, Campagnolo L, Dottori M, Kenny JM, Siracusa G, Gusmano G. Electrospun poly(epsilon-caprolactone)/Ca-deficient hydroxyapatite nanohybrids: microstructure, mechanical properties and cell response by murine embryonic stem cells. Mater Sci Eng C-Mater Biol Appl. 2009;29:2063–71.

    Article  Google Scholar 

  28. Nisbet DR, Rodda AE, Finkelstein DI, Horne MK, Forsythe JS, Shen W. Surface and bulk characterisation of electrospun membranes: problems and improvements. Colloids and Surf B Biointerfaces. 2009;71:CP1–12.

    Article  Google Scholar 

  29. Veleva AN, Heath DE, Johnson JK, Nam J, Patterson C, Lannutti JJ, Cooper SL. Interactions between endothelial cells and electrospun methacrylic terpolymer fibers for engineered vascular replacements. J Biomed Mater Res Part A. 2009;91A:1131–9.

    Article  Google Scholar 

  30. Nam J, Huang Y, Agarwal S, Lannutti J. Materials selection and residual solvent retention in biodegradable electrospun fibers. J Appl Polym Sci. 2008;107:1547–54.

    Article  Google Scholar 

  31. Zhu C, Bao G, Wang N. Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu Rev Biomed Eng. 2000;2:189–226.

    Article  Google Scholar 

  32. Venugopal J, Ma LL, Yong T, Ramakrishna S. In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous matrices. Cell Biol Int. 2005;29:861–7.

    Article  Google Scholar 

  33. Gautam S, Dinda AK, Mishra NC. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C Mater Biol Appl. 2013;33:1228–35.

    Article  Google Scholar 

  34. Kai D, Prabhakaran MP, Stahl B, Eblenkamp M, Wintermantel E, Ramakrishna S. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Nanotechnology. 2012;23:095705.

    Article  Google Scholar 

  35. Pok S, Myers JD, Madihally SV, Jacot JG. A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Acta Biomater. 2013;9:5630–42.

    Article  Google Scholar 

  36. Guarino V, Alvarez-Perez M, Cirillo V, Ambrosio L. hMSC interaction with PCL and PCL/gelatin platforms: a comparative study on films and electrospun membranes. J Bioact Compatible Polym. 2011;26:144–60.

    Article  Google Scholar 

  37. Chakrapani VY, Gnanamani A, Giridev VR, Madhusoothanan M, Sekaran G. Electrospinning of type I collagen and PCL nanofibers using acetic acid. J Appl Polym Sci. 2012;125:3221–7.

    Article  Google Scholar 

  38. JC Dias, C Ribeiro, V Sencadas, G Botelho, JLG Ribelles, S Lanceros-Mendez. Influence of fiber diameter and crystallinity on the stability of electrospun poly(l-lactic acid) membranes to hydrolytic degradation. Polym Test. 2012;31:770–6.

    Google Scholar 

  39. Rnjak-Kovacina J, Wise SG, Li Z, Maitz PKM, Young CJ, Wang Y, Weiss AS. Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering. Acta Biomater. 2012;8:3714–22.

    Article  Google Scholar 

  40. Tigli RS, Kazaroglu NM, Mavis B, Gumusderelioglu M. Cellular behavior on epidermal growth factor (EGF)-immobilized PCL/Gelatin nanofibrous scaffolds. J Biomater Sci Polym Ed. 2011;22:207–23.

    Article  Google Scholar 

  41. Chew SY, Hufnagel TC, Lim CT, Leong KW. Mechanical properties of single electrospun drug-encapsulated nanofibres. Nanotechnology. 2006;17:3880–91.

    Article  Google Scholar 

  42. Nelson MT, Munj HR, Tomasko DL, Lannutti JJ. Carbon dioxide infusion of composite electrospun fibers for tissue engineering. J Supercrit Fluids. 2012;70:90–9.

    Article  Google Scholar 

  43. Chen Z, Cao L, Wang L, Zhu H, Jiang H. Effect of fiber structure on the properties of the electrospun hybrid membranes composed of poly(e-caprolactone) and gelatin. J Appl Polym Sci. 2013;127:4225–32.

    Article  Google Scholar 

  44. Huang ZM, Zhang YZ, Ramakrishna S. Double-layered composite nanofibers and their mechanical performance. J Polym Sci Part B. 2005;43:2852–61.

    Article  Google Scholar 

  45. Ratanavaraporn J, Rangkupan R, Jeeratawatchai H, Kanokpanont S, Damrongsakkul S. Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats. Int J Biol Macromol. 2010;47:431–8.

    Article  Google Scholar 

  46. Zhang YZ, Ouyang HW, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater. 2005;72B:156–65.

    Article  Google Scholar 

  47. Zhang YZ, Feng Y, Huang ZM, Ramakrishna S, Lim CT. Fabrication of porous electrospun nanofibres. Nanotechnology. 2006;17:901–8.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from the National Science Foundation under Grant No. EEC-0425626. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Lannutti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, M.T., Johnson, J. & Lannutti, J. Media-based effects on the hydrolytic degradation and crystallization of electrospun synthetic-biologic blends. J Mater Sci: Mater Med 25, 297–309 (2014). https://doi.org/10.1007/s10856-013-5077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5077-0

Keywords

Navigation