Skip to main content

Advertisement

Log in

Effective combination of hydrostatic pressure and aligned nanofibrous scaffolds on human bladder smooth muscle cells: implication for bladder tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bladder tissue engineering has been the focus of many studies due to its highly therapeutic potential. In this regard many aspects such as biochemical and biomechanical factors need to be studied extensively. Mechanical stimulations such as hydrostatic pressure and topology of the matrices are critical features which affect the normal functions of cells involved in bladder regeneration. In this study, hydrostatic pressure (10 cm H2O) and stretch forces were exerted on human bladder smooth muscle cells (hBSMCs) seeded on aligned nanofibrous polycaprolactone/PLLA scaffolds, and the alterations in gene and protein expressions were studied. The gene transcription patterns for collagen type I, III, IV, elastin, α-SMA, calponin and caldesmon were monitored on days 3 and 5 quantitatively. Changes in the expressions of α-SMA, desmin, collagen type I and III were quantified by Enzyme-linked immuno-sorbent assay. The scaffolds were characterized using scanning electron microscope, contact angle measurement and tensile testing. The positive effect of mechanical forces on the functional improvement of the engineered tissue was supported by translational down-regulation of α-SMA and VWF, up-regulation of desmin and improvement of collagen type III:I ratio. Altogether, our study reveals that proper hydrostatic pressure in combination with appropriate surface stimulation on hBSMCs causes a tissue-specific phenotype that needs to be considered in bladder tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hubschmid U, Leong-Morgenthaler PM, Basset-Dardare A, Ruault S, Frey P. In vitro growth of human urinary tract smooth muscle cells on laminin and collagen type I-coated membranes under static and dynamic conditions. Tissue Eng. 2005;11(1–2):161–71. doi:10.1089/ten.2005.11.161.

    Article  CAS  Google Scholar 

  2. Drumm MR, York BD, Nagatomi J. Effect of sustained hydrostatic pressure on rat bladder smooth muscle cell function. Urology. 2010;75(4):879–85. doi:10.1016/j.urology.2009.08.050.

    Article  Google Scholar 

  3. Haberstroh KM, Kaefer M, DePaola N, Frommer SA, Bizios R. A novel in vitro system for the simultaneous exposure of bladder smooth muscle cells to mechanical strain and sustained hydrostatic pressure. J Biomech Eng. 2002;124(2):208–13.

    Article  Google Scholar 

  4. Wallis MC, Yeger H, Cartwright L, Shou Z, Radisic M, Haig J, et al. Feasibility study of a novel urinary bladder bioreactor. Tissue Eng Part A. 2008;14(3):339–48. doi:10.1089/tea.2006.0398.

    Article  CAS  Google Scholar 

  5. Sharma A, Donovan J, Hagerty J, Sullivan R, Edassery S, Harrington D, et al. Do current bladder smooth muscle cell isolation procedures result in a homogeneous cell population? Implications for bladder tissue engineering. World J Urol. 2009;27(5):687–94. doi:10.1007/s00345-009-0391-3.

    Article  Google Scholar 

  6. Upadhyay J, Aitken KJ, Damdar C, Bolduc S, Bagli DJ. Integrins expressed with bladder extracellular matrix after stretch injury in vivo mediate bladder smooth muscle cell growth in vitro. J Urol. 2003;169(2):750–5. doi:10.1097/01.ju.0000051682.61041.a5.

    Article  CAS  Google Scholar 

  7. Nagatomi J, Toosi KK, Chancellor MB, Sacks MS. Contribution of the extracellular matrix to the viscoelastic behavior of the urinary bladder wall. Biomech Model Mechanobiol. 2008;7(5):395–404. doi:10.1007/s10237-007-0095-9.

    Article  Google Scholar 

  8. Chai TC, Zhang C-O, Shoenfelt JL, Johnson HW, Warren JW, Keay S. Bladder stretch alters urinary heparin-binding epidermal growth factor and antiproliferative factor in patients with interstitial cystitis. J Urol. 2000;163(5):1440–4.

    Article  CAS  Google Scholar 

  9. Haberstroh KM, Kaefer M, Retik AB, Freeman MR, Bizios R. The effects of sustained hydrostatic pressure on select bladder smooth muscle cell functions. J Urol. 1999;162(6):2114–8.

    Article  CAS  Google Scholar 

  10. Adam RM, Eaton SH, Estrada C, Nimgaonkar A, Shih S-C, Smith LEH, et al. Mechanical stretch is a highly selective regulator of gene expression in human bladder smooth muscle cells. Physiol Genomics. 2004;20(1):36–44. doi:10.1152/physiolgenomics.00181.2004.

    Article  CAS  Google Scholar 

  11. Galvin DJ, Watson RW, Gillespie JI, Brady H, Fitzpatrick JM. Mechanical stretch regulates cell survival in human bladder smooth muscle cells in vitro. Am J Physiol Renal Physiol. 2002;283(6):F1192–9. doi:10.1152/ajprenal.00168.2002.

    CAS  Google Scholar 

  12. Coplen DE, Macarak EJ, Howard PS. Matrix synthesis by bladder smooth muscle cells is modulated by stretch frequency. In Vitro Cell Dev Biol Anim. 2003;39(3–4):157–62. doi:10.1007/s11626-003-0010-3.

    CAS  Google Scholar 

  13. Backhaus BO, Kaefer M, Haberstroh KM, Hile K, Nagatomi J, Rink RC, et al. Alterations in the molecular determinants of bladder compliance at hydrostatic pressures less than 40 cm. H2O. J Urol. 2002;168(6):2600–4. doi:10.1097/01.ju.0000037531.90922.d4.

    Article  Google Scholar 

  14. Gomez P III, Gil ES, Lovett ML, Rockwood DN, Di Vizio D, Kaplan DL. The effect of manipulation of silk scaffold fabrication parameters on matrix performance in a murine model of bladder augmentation. Biomaterials. 2011;32(30):7562–70.

    Article  CAS  Google Scholar 

  15. Mauney JR, Cannon GM, Lovett ML, Gong EM, Di Vizio D, Gomez P III, et al. Evaluation of gel spun silk-based biomaterials in a murine model of bladder augmentation. Biomaterials. 2011;32(3):808–18.

    Article  CAS  Google Scholar 

  16. Engelhardt E-M, Micol LA, Houis S, Wurm FM, Hilborn J, Hubbell JA, et al. A collagen-poly(lactic acid-co-ɛ-caprolactone) hybrid scaffold for bladder tissue regeneration. Biomaterials. 2011;32(16):3969–76.

    Article  CAS  Google Scholar 

  17. Vasita RK, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine. 2006;1(1):15–30.

    Article  CAS  Google Scholar 

  18. Harrington D, Sharma A, Erickson B, Cheng E. Bladder tissue engineering through nanotechnology. World J Urol. 2008;26(4):315–22. doi:10.1007/s00345-008-0273-0.

    Article  Google Scholar 

  19. Young Wook C, Dongwoo K, Karen MH, Thomas JW. The role of polymer nanosurface roughness and submicron pores in improving bladder urothelial cell density and inhibiting calcium oxalate stone formation. Nanotechnology. 2009;20(8):085104.

    Article  Google Scholar 

  20. Hashemi SM, Soleimani M, Zargarian SS, Haddadi-Asl V, Ahmadbeigi N, Soudi S, et al. In vitro differentiation of human cord blood-derived unrestricted somatic stem cells into hepatocyte-like cells on poly(epsilon-caprolactone) nanofiber scaffolds. Cells Tissues Organs. 2009;190(3):135–49. doi:10.1159/000187716.

    Article  CAS  Google Scholar 

  21. Shor L, Güçeri S, Wen X, Gandhi M, Sun W. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials. 2007;28(35):5291–7.

    Article  CAS  Google Scholar 

  22. Ge Z, Yang F, Goh JCH, Ramakrishna S, Lee EH. Biomaterials and scaffolds for ligament tissue engineering. J Biomed Mater Res Part A. 2006;77A(3):639–52. doi:10.1002/jbm.a.30578.

    Article  CAS  Google Scholar 

  23. Wright-Charlesworth DD, King JA, Miller DM, Lim CH. In vitro flexural properties of hydroxyapatite and self-reinforced poly(l-lactic acid). J Biomed Mater Res Part A. 2006;78A(3):541–9. doi:10.1002/jbm.a.30767.

    Article  CAS  Google Scholar 

  24. Santos MI, Tuzlakoglu K, Fuchs S, Gomes ME, Peters K, Unger RE, et al. Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering. Biomaterials. 2008;29(32):4306–13. doi:10.1016/j.biomaterials.2008.07.033.

    Article  CAS  Google Scholar 

  25. Kwon IK, Kidoaki S, Matsuda T. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials. 2005;26(18):3929–39. doi:10.1016/j.biomaterials.2004.10.007.

    Article  CAS  Google Scholar 

  26. Thapa A, Miller DC, Webster TJ, Haberstroh KM. Nano-structured polymers enhance bladder smooth muscle cell function. Biomaterials. 2003;24(17):2915–26.

    Article  CAS  Google Scholar 

  27. Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26(15):2603–10. doi:10.1016/j.biomaterials.2004.06.051.

    Article  CAS  Google Scholar 

  28. Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ. The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials. 2008;29(19):2899–906. doi:10.1016/j.biomaterials.2008.03.031.

    Article  CAS  Google Scholar 

  29. Ono Y, Kawachi S, Hayashida T, Wakui M, Tanabe M, Itano O, et al. The influence of donor age on liver regeneration and hepatic progenitor cell populations. Surgery. 2011;150(2):154–61.

    Article  Google Scholar 

  30. Sobue K, Hayashi K, Nishida W. Expressional regulation of smooth muscle cell-specific genes in association with phenotypic modulation. Mol Cell Biochem. 1999;190(1–2):105–18.

    Article  CAS  Google Scholar 

  31. Shynlova O, Tsui P, Dorogin A, Chow M, Lye SJ. Expression and localization of alpha-smooth muscle and gamma-actins in the pregnant rat myometrium. Biol Reprod. 2005;73(4):773–80. doi:10.1095/biolreprod.105.040006.

    Article  CAS  Google Scholar 

  32. Reilly GC, Engler AJ. Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech. 2010;43(1):55–62.

    Article  Google Scholar 

  33. Baker SC, Rohman G, Southgate J, Cameron NR. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering. Biomaterials. 2009;30(7):1321–8.

    Article  CAS  Google Scholar 

  34. Battista S, Guarnieri D, Borselli C, Zeppetelli S, Borzacchiello A, Mayol L, et al. The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials. 2005;26(31):6194–207.

    Article  CAS  Google Scholar 

  35. Ajami-Henriquez D, Rodriguez M, Sabino M, Castillo RV, Muller AJ, Boschetti-de-Fierro A, et al. Evaluation of cell affinity on poly(l-lactide) and poly(epsilon-caprolactone) blends and on PLLA-b-PCL diblock copolymer surfaces. J Biomed Mater Res A. 2008;87(2):405–17. doi:10.1002/jbm.a.31796.

    Google Scholar 

  36. Gao L, McBeath R, Chen CS. Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin. Stem Cells. 2010;28(3):564–72. doi:10.1002/stem.308.

    CAS  Google Scholar 

  37. Kurpinski KT, Stephenson JT, Janairo RR, Lee H, Li S. The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds. Biomaterials. 2010;31(13):3536–42. doi:10.1016/j.biomaterials.2010.01.062.

    Article  CAS  Google Scholar 

  38. Nagatomi J, Wu Y, Gray M. Proteomic analysis of bladder smooth muscle cell response to cyclic hydrostatic pressure. Cell Mol Bioeng. 2009;2(1):166–73. doi:10.1007/s12195-009-0043-0.

    Article  CAS  Google Scholar 

  39. Junge K, Klinge U, Rosch R, Mertens PR, Kirch J, Klosterhalfen B, et al. Decreased collagen type I/III ratio in patients with recurring hernia after implantation of alloplastic prostheses. Langenbecks Arch Surg. 2004;389(1):17–22. doi:10.1007/s00423-003-0429-8.

    Article  Google Scholar 

  40. Sievert KD, Fandel T, Wefer J, Gleason CA, Nunes L, Dahiya R, et al. Collagen I:III ratio in canine heterologous bladder acellular matrix grafts. World J Urol. 2006;24(1):101–9. doi:10.1007/s00345-006-0052-8.

    Article  CAS  Google Scholar 

  41. Zhang X, Wang X, Keshav V, Johanas JT, Leisk GG, Kaplan DL. Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts. Biomaterials. 2009;30(19):3213–23. doi:10.1016/j.biomaterials.2009.02.002.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by University of Tehran and Stem Cell Technology Research Center. The authors wish to thank Dr. E. C. Thrower, Yale University, for critical revision of the manuscript.

Conflict of interest

Authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masoud Soleimani or Hamid Mobasheri.

Additional information

Dedicated to late Professor M. N. Sarbolouki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahvaz, H.H., Soleimani, M., Mobasheri, H. et al. Effective combination of hydrostatic pressure and aligned nanofibrous scaffolds on human bladder smooth muscle cells: implication for bladder tissue engineering. J Mater Sci: Mater Med 23, 2281–2290 (2012). https://doi.org/10.1007/s10856-012-4688-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4688-1

Keywords

Navigation