Skip to main content
Log in

Efficacy of silver treated catheters for haemodialysis in preventing bacterial adhesion

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The growing resistance of many strains of bacteria to antibiotics and antiseptics is becoming a serious problem in medicine. Nano-silver is one of the most prominent products in medicine because it exhibits unusual physicochemical properties and a strong biological activity. In this work an innovative silver deposition technology was applied to temporary polyurethane catheters for haemodialysis. The working conditions of catheters were reproduced through laboratory equipment that ensured the flow of deionized water and simulated body fluid inside the lumina at corporeal temperature. The growth and the adhesion of Staphylococcus aureus on the surface of the device were studied through fluorescence microscopy. ICP-AES was adopted to calculate the amount of silver released from the substrate. The stability of the coating during the whole working life of the device was demonstrated through thermo-gravimetric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Singh M, Singh S, Prasad S, Gambhir IS. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig J Nanomater Bios. 2008;3:115–22.

    Google Scholar 

  2. Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176:1–12.

    Article  CAS  Google Scholar 

  3. Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009;145:83–96.

    Article  CAS  Google Scholar 

  4. Lara HH, Ayala-Nunez NV, Ixtepan Turrent LC, Rodrıguez Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Biotechnol. 2010;20:8.

    Google Scholar 

  5. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010;85:1115–22.

    Article  CAS  Google Scholar 

  6. Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30:6333–40.

    Article  CAS  Google Scholar 

  7. Lu L, Sun RW, Chen R, Hui CK, Ho CM, Luk JM, et al. Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther. 2008;13:253–62.

    CAS  Google Scholar 

  8. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.

    Article  CAS  Google Scholar 

  9. Guzmán MG, Dille J, Godet S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biomol Eng. 2009;2:104–11.

    Google Scholar 

  10. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramırez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–53.

    Article  CAS  Google Scholar 

  11. Radzig MA, Koksharova OA, Khmel IA. Antibacterial effects of silver ions: effect on gram-negative bacteria growth and biofilm formation. Mol Gen Mikrobiol Virusol. 2009;4:27–31.

    Google Scholar 

  12. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater. 2000;52:662–8.

    Article  CAS  Google Scholar 

  13. Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol. 2008;24:192–6.

    CAS  Google Scholar 

  14. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74:2171–8.

    Article  CAS  Google Scholar 

  15. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358:135–8.

    Article  CAS  Google Scholar 

  16. Tambe SM, Sampath L, Modak SM. In vitro evaluation of the risk of developing bacterial resistance to antiseptics and antibiotics used in medical devices. J Antimicrob Chemother. 2001;47:589–98.

    Article  CAS  Google Scholar 

  17. Wong SSY, Ho PL, Yuen KY. Evolution of antibiotic resistance mechanism and their relevance to dialysis-related infections. Perit Dial Int. 2007;27:272–80.

    Google Scholar 

  18. Pavithra D, Doble M. Biofilm formation, bacterial adhesion and host response on polymeric implants-issues and prevention. Biomed Mater. 2008;3:034003.

    Article  CAS  Google Scholar 

  19. Menno LWK, Koole LH. New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers. 2011;3:340–66.

    Article  Google Scholar 

  20. Dowling DP, Donnelly K, McConnell ML, Eloy R, Arnaud MN. Deposition of anti-bacterial silver coatings on polymeric substrates. Thin Solid Films. 2001;398:602–6.

    Article  Google Scholar 

  21. Korner E, Aguirre MH, Fortunato G, Ritter A, Ruhe J, Hegemann D. Formation and distribution of silver nanoparticles in a functional plasma polymer matrix and related Ag+ release properties. Plasma Process Polym. 2010;7:619–25.

    Article  Google Scholar 

  22. Samuel U, Guggenbichler JP. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents. 2004;23:S75–8.

    Article  CAS  Google Scholar 

  23. Pollini M, Sannino A, Maffezzoli A, Licciulli A. Antibacterial surface treatments based on silver clusters deposition. European Patent No. EP1986499, 2008.

  24. Pollini M, Russo M, Licciulli A, Sannino A, Maffezzoli A. Characterization of antibacterial silver coated yarns. Mater Med. 2009;20:2361–6.

    Article  CAS  Google Scholar 

  25. Pollini M, Paladini F, Licciulli A, Maffezzoli A, Sannino A. Engineering nanostructured silver coatings for antimicrobial applications. Nanoantimicrob Prog Prospect. 2012. doi:10.1007/978-3-642-24428-5_11.

    Google Scholar 

  26. Pollini M, Paladini F, Catalano M, Taurino A, Licciulli A, Maffezzoli A, et al. Antibacterial coatings on haemodialysis catheters by photochemical deposition of silver nanoparticles. Mater Med. 2011;22:2005–12.

    Article  CAS  Google Scholar 

  27. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamum T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J Biomed Mater Res. 1990;24:721–34.

    Article  CAS  Google Scholar 

  28. Hazeu W, Hueck HJ. The use of β-propiolactone for the sterilization of heat-labile materials. Van Leeuwenhoek A. 1965;31:295–300.

    Article  CAS  Google Scholar 

  29. Sambrook J, Russell DW. Molecular cloning. A laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 2001.

  30. Woodyard LL, Bowersock TL, Turek JJ, McCabe GP, DeFord J. A comparison of the effects of several silver-treated intravenous catheters on the survival of staphylococci in suspension and their adhesion to the catheter surface. J Controlled Release. 1996;40:23–30.

    Article  CAS  Google Scholar 

  31. Crabtree JH, Burchette RJ, Siddiqi RA, Huen IT, Hadnott LL, Fishman A. The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections. Perit Dial Int. 2003;23:368–74.

    CAS  Google Scholar 

  32. Gray JE, Norton PR, Alnouno R, Marolda CL, Valvano MA, Griffiths K. Biological efficacy of electroless-deposited silver on plasma activated polyurethane. Biomaterials. 2003;24:2759–65.

    Article  CAS  Google Scholar 

  33. Kumar R, Munstedt H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials. 2005;26:2081–8.

    Article  CAS  Google Scholar 

  34. Stobie N, Duffy B, McCormack D, Colreavy J, Hidalgo SJ. Prevention of Staphylococcus epidermidis biofilm formation using a low-temperature processed silver-doped phenyltriethoxysilane sol-gel coating. Biomaterials. 2008;29:963–9.

    Article  CAS  Google Scholar 

  35. Schierholz JM, Lucasj LJ, Rump A, Pulverer G. Efficacy of silver-coated medical devices. J of Hosp Infect. 1998;40:257–62.

    Article  CAS  Google Scholar 

  36. Schierholz JM, Beuth J, Pulverer G. Silver-Containing Polymers. Antimicrob Agents Chemother. 1999;43:2819–21.

    CAS  Google Scholar 

  37. Damm C, Munstedt H, Rosch A. The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Mater Chem Phys. 2008;108:61–6.

    Article  CAS  Google Scholar 

  38. Balaban N, Gov Y, Bitler A, Boelaert JR. Prevention of Staphylococcus aureus biofilm on dialysis catheters and adherence to human cells. Kidney Int. 2003;63:340–5.

    Article  Google Scholar 

  39. Bayston R, Vera L, Mills A, Ashraf W, Stevenson O, Howdle SM. In vitro antimicrobial activity of silver-processed catheters for neurosurgery. J Antimicrob Chemother. 2010;65:258–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Luca Salvatore from Engineering Department of University of Salento for the kindness in providing his technical support for the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pollini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paladini, F., Pollini, M., Talà, A. et al. Efficacy of silver treated catheters for haemodialysis in preventing bacterial adhesion. J Mater Sci: Mater Med 23, 1983–1990 (2012). https://doi.org/10.1007/s10856-012-4674-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4674-7

Keywords

Navigation