Skip to main content
Log in

Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The adequate regeneration of large bone defects is still a major problem in orthopaedic surgery. Synthetic bone substitute materials have to be biocompatible, biodegradable, osteoconductive and processable into macroporous scaffolds tailored to the patient specific defect. Hydroxyapatite (HA) and tricalcium phosphate (TCP) as well as mixtures of both phases, biphasic calcium phosphate ceramics (BCP), meet all these requirements and are considered to be optimal synthetic bone substitute materials. Rapid prototyping (RP) can be applied to manufacture scaffolds, meeting the criteria required to ensure bone ingrowth such as high porosity and defined pore characteristics. Such scaffolds can be used for bone tissue engineering (BTE), a concept based on the cultivation of osteogenic cells on osteoconductive scaffolds. In this study, scaffolds with interconnecting macroporosity were manufactured from HA, TCP and BCP (60 wt% HA) using an indirect rapid prototyping technique involving wax ink-jet printing. ST-2 bone marrow stromal cells (BMSCs) were seeded onto the scaffolds and cultivated for 17 days under either static or dynamic culture conditions and osteogenic stimulation. While cell number within the scaffold pore system decreased in case of static conditions, dynamic cultivation allowed homogeneous cell growth even within deep pores of large (1,440 mm3) scaffolds. Osteogenic cell differentiation was most advanced on BCP scaffolds in both culture systems, while cells cultured under perfusion conditions were generally more differentiated after 17 days. Therefore, scaffolds manufactured from BCP ceramic and seeded with BMSCs using a dynamic culture system are the method of choice for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stevens B, Yang Y, Mohandas A, Stucker B, Nguyen K. A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res B. 2008;85:573–82.

    Google Scholar 

  2. Gazdag AR, Lane JM, Glaser D, Forster RA. Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg. 1995;3:1–8.

    PubMed  Google Scholar 

  3. Zipfel GJ, Guiot BH, Fessler RG. Bone grafting. Neurosurg Focus. 2003;14:1–8.

    Article  Google Scholar 

  4. Itthichaisri C, Wiedmann-Al-Ahmad M, Huebner U, Al-Ahmad A, Schoen R, Schmelzeisen R, Gellrich N. Comparative in vitro study of the proliferation and growth of human osteoblast-like cells on various biomaterials. J Biomed Mater Res A. 2007;82:777–87.

    CAS  PubMed  Google Scholar 

  5. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4:518–24.

    Article  CAS  ADS  PubMed  Google Scholar 

  6. Lian JB, Stein GS. Development of the osteoblast phenotype: molecular mechanisms mediating osteoblast growth and differentiation. Iowa Orthop J. 1995;15:118–40.

    CAS  PubMed  Google Scholar 

  7. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–81.

    Article  CAS  PubMed  Google Scholar 

  8. Dorozhkin S, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed Engl. 2002;41:3130–46.

    Article  CAS  PubMed  Google Scholar 

  9. Woodard JR, Hilldore AJ, Lan SK. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials. 2007;28:45–54.

    Article  CAS  PubMed  Google Scholar 

  10. Detsch R, Mayr H, Ziegler G. Formation of osteoclast-like cells on HA and TCP ceramics. Acta Biomat. 2008;4:139–48.

    Article  CAS  Google Scholar 

  11. Mayr H, Schlüfter S, Detsch R, Ziegler G. Influence of phase composition on degradation and resorption of biphasic calcium phosphate ceramics. Key Eng Mat. 2008;361–363:1043–6.

    Article  Google Scholar 

  12. Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med. 2003;14:195–200.

    Article  CAS  PubMed  Google Scholar 

  13. Raynaud S, Champion E, Lafon JP, Bernache-Assolant D. Calcium phosphate apatites with variable Ca/P atomic ratio III. Mechanical properties and degradation in solution of hot pressed ceramics. Biomaterials. 2002;23:1081–9.

    Article  CAS  PubMed  Google Scholar 

  14. Davies JE. Bone engineering. 1st ed. Toronto: em squared; 2000.

    Google Scholar 

  15. Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials. 1996;17:137–46.

    Article  CAS  PubMed  Google Scholar 

  16. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.

    Article  CAS  PubMed  Google Scholar 

  17. Lu JX, Flautre B, Anselme K. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med. 1999;10:111–20.

    Article  CAS  PubMed  Google Scholar 

  18. Hing KA. Bioceramic bone graft substitutes: influence of porosity and chemistry. Int J Appl Ceram Technol. 2005;2:184–99.

    Article  CAS  Google Scholar 

  19. Habibovic P, de Groot K. Osteoinductive biomaterials—properties and relevance in bone repair. J Tissue Eng Regen Med. 2007;1:25–32.

    Article  CAS  PubMed  Google Scholar 

  20. Tsang VL, Bhaita SN. Fabrication of three-dimensional tissues. Adv Biochem Eng/Biotechnol. 2006;103:189–205.

    Article  Google Scholar 

  21. Deisinger U, Hamisch S, Schumacher M, Uhl F, Detsch R, Ziegler G. Fabrication of tailored hydroxyapatite scaffolds: comparison of a direct and an indirect rapid prototyping technique. Key Eng Mater. 2008;361–363:915–8.

    Article  Google Scholar 

  22. Limpanuphap S, Derby B. Manufacture of biomaterials by a novel printing process. J Mater Sci Mater Med. 2002;13:1163–6.

    Article  CAS  PubMed  Google Scholar 

  23. Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials. 2003;24:181–94.

    Article  CAS  PubMed  Google Scholar 

  24. Detsch R, Uhl F, Deisinger U, Ziegler G. 3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique. J Mater Sci Mater Med. 2008;19:1491–6.

    Article  CAS  PubMed  Google Scholar 

  25. Wilson CE, de Bruijn JD, van Blitterswijk CA, Verbout AJ, Dhert WJA. Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research. J Biomed Mater Res A. 2004;68:123–32.

    Article  CAS  PubMed  Google Scholar 

  26. Botchwey EA, Dupree MA, Pollack SR, Levine EM, Laurencin CT. Tissue engineered bone: measurement of nutrient transport in three-dimensional matrices. J Biomed Mater Res A. 2003;67:357–67.

    Article  PubMed  Google Scholar 

  27. Chen H, Hu Y. Bioreactors for tissue engineering. Biotechnol Lett. 2006;28:1415–23.

    Article  CAS  PubMed  Google Scholar 

  28. Bancroft GN, Sikavitsas VI, van den Dolder J, Sheffield TL, Ambrose CG, Jansen JA, Mikos AG. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA. 2002;99:12600–5.

    Article  CAS  ADS  PubMed  Google Scholar 

  29. Bjerre L, Bunger CE, Kassem M, Mygind T. Flow perfusion culture of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds. Biomaterials. 2008;29:2616–27.

    Article  CAS  PubMed  Google Scholar 

  30. Du D, Furukawa K, Ushida T. Oscillatory perfusion seeding and culturing of osteoblast-like cells on porous beta-tricalcium phosphate scaffolds. J Biomed Mater Res A. 2008;86:796–803.

    PubMed  Google Scholar 

  31. Malda J, Rouwkema J, Martens DE, Le Comte EP, Kooy FK, Tramper J, van Blitterswijk CA, Riesle J. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling. Biotechnol Bioeng. 2004;86:9–18.

    Article  CAS  PubMed  Google Scholar 

  32. Allen M, Millett P, Dawes E, Rushton N. Lactate dehydrogenase activity as a rapid and sensitive test for the quantification of cell numbers in vitro. Clin Mater. 1994;16:189–94.

    Article  CAS  PubMed  Google Scholar 

  33. Maeno S, Niki Y, Matsumoto H. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26:4847–55.

    Article  CAS  PubMed  Google Scholar 

  34. Theoleyre S, Wittrant Y, Tat SK. The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodelling. Cytokine Growth Factor Rev. 2004;15:457–75.

    Article  CAS  PubMed  Google Scholar 

  35. Malaval L, Roche P, Aubin JE. Kinetics of osteoprogenitor proliferation and osteoblast differentiation in vitro. J Cell Biochem. 1999;74:616–27.

    Article  CAS  PubMed  Google Scholar 

  36. Wang C, Duan Y, Markovic B, Barbara J, Howlett CR, Zhang X, Zreiqat H. Phenotypic expression of bone-related genes in osteoblasts grown on calcium phosphate ceramics with different phase compositions. Biomaterials. 2004;25:2507–14.

    Article  CAS  PubMed  Google Scholar 

  37. Jaasma MJ, Plunkett NA, O’Brien FJ. Design and validation of a dynamic flow perfusion bioreactor for use with compliant tissue engineering scaffolds. J Biotech. 2008;133:490–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schumacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumacher, M., Uhl, F., Detsch, R. et al. Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique. J Mater Sci: Mater Med 21, 3039–3048 (2010). https://doi.org/10.1007/s10856-010-4153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4153-y

Keywords

Navigation