Skip to main content

Advertisement

Log in

Mechanical characterization of dense calcium phosphate bioceramics with interconnected porosity

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Porous hydroxyapatite/tricalcium phosphate (HA/TCP) bioceramics were fabricated by a novel technique of vacuum impregnation of reticulated polymeric foams with ceramic slip. The samples had approximately 5–10% interconnected porosity and controlled pore sizes appropriate to allow bone ingrowth, combined with good mechanical properties. A range of polyurethane foams with 20, 30 and 45 pores per inch (ppi) were used as templates to produce samples for testing. The foams were inpregnated with solid loadings in the range of 60–140 wt%. The results indicated that the average apparent density of the HA/TCP samples was 2.48 g/cm3, the four-point bending strength averaged 16.98 MPa, the work of fracture averaged 15.46 J/m2 and the average compressive strength was 105.56 MPa. A range of mechanical properties resulted from the various combinations of different grades of PU foam and the solid loading of slips. The results indicated that it is possible to manufacture open pore HA/TCP bioceramics, with compressive strengths comparable to human bone, which could be of significant clinical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. L. HENCH, J. Am. Ceram. Soc. 81 (1998) 1705

    CAS  Google Scholar 

  2. L. L. HENCH, J. Am. Ceram. Soc. 74 (1991) 1487

    Article  CAS  Google Scholar 

  3. A. TAMPIERI, G. CELOTTI, S. SPRIO, A. DELCEGLIANO and S. FRANZESE, Biomaterials 22 (2001) 1365

    Article  CAS  Google Scholar 

  4. T. M. G. CHU, D. G. ORTON, S. J. HOLLISTER, S. E. FEINBERG and J. W. HALLORAN, Biomaterials 23 (2002) 1283

    Article  CAS  Google Scholar 

  5. J. TIAN and J. TIAN, J. Mater. Sci. 36 (2001) 3061

    Article  CAS  Google Scholar 

  6. B. FLAUTRE, M. DESCAMPS, C. DELECOURT, M.C. BLARY and P. HARDOUIN, J. Mater. Sci.: Mater. Med. 12 (2001) 679

    Article  CAS  Google Scholar 

  7. J. X. LU, B. FLAUTRE, K. ANSELME and P. HARDOUIN, J. Mater. Sci.: Mater. Med. 10 (1999) 111

    Article  CAS  Google Scholar 

  8. J. H. KUHNE, R. BARTL, B. FRISH, C. HANMER, V. JANSSON and M. ZIMMER, Acta Orthopaedica Scand. 65 (1994) 246

    CAS  Google Scholar 

  9. P. S. EGGLI, W. MULLER and R. K. SCHENK, Clin. Orthopaedics Related Res. 232 (1988) 127

    CAS  Google Scholar 

  10. V. KARAGEORGIOU and D. KAPLAN, Biomaterials 26 (2005) 5474

    Article  CAS  Google Scholar 

  11. R. P. REAL, J. G. C. WOLKE, M. VALLET-REGI and J. A. JANSEN, Biomaterials 23 (2002) 3673

    Article  Google Scholar 

  12. Y. H. HSU, I. G. TURNER and A. W. MILES, Key Eng. Mater. 284–286 (2005) 305

    Google Scholar 

  13. J. D. SANTOS, J. C. KNOWLES, R. L. REIS, F. J. MONTEIRO and G. W. HASTING, Biomaterials 15 (1994) 5

    Article  CAS  Google Scholar 

  14. R. A. YOUNG and J. C. ELLIOT, Arch. Oral Biol. 11 (1966) 699

    Article  CAS  Google Scholar 

  15. M. MILOSEVSKI, J. BOSSERT, D. MILOSEVSKI and N. GRUEVSKA, Ceram. Int. 25 (1999) 693

    Article  CAS  Google Scholar 

  16. N. O. ENGIN and A. C. TAS, J. Eur. Ceram. Soc. 19 (1999) 2569

    Article  CAS  Google Scholar 

  17. M. FABBRI, G. C. CELOTTI and A. RAVAGLIOLI, Biomaterials 16 (1995) 225

    Article  CAS  Google Scholar 

  18. D. M. LIU, Ceram. Int. 24 (1998) 441

    Article  CAS  Google Scholar 

  19. C. CHU, P. LIN, Y. DONG, X. XUE, J. ZHU and Z. YIN, J. Mater. Sci.: Mater. Med. 13 (2002) 985

    Article  CAS  Google Scholar 

  20. H. H. K. XU and J. B. QUINN, Biomaterials 23 (2002) 193

    Article  Google Scholar 

  21. R. W. DAVIDGE and G. TAPPIN, J. Mater. Sci. 3 (1968) 165

    Article  CAS  Google Scholar 

  22. L. A. SIMPSON, J. Am. Ceram. Soc. 56 (1972) 7

    Article  Google Scholar 

  23. P. SEPULVEDA, J. G. P. BINNER, S. O. ROGERO, O. Z. HIHA and J. C. BRESSIANI, J. Biomed. Mater. Res. 50 (2000) 27

    Article  CAS  Google Scholar 

  24. K. A. HING, S. M. BEST and W. BONFIELD, J. Mater. Sci.: Mater. Med. 10 (1999) 135

    Article  CAS  Google Scholar 

  25. P. SEPULVEDA, F. S. ORTEGA, M. D. M. INNOCENTINI and V. C. PANDOLFELLI, J. Am. Ceram. Soc. 83 (2000) 3021

    CAS  Google Scholar 

  26. H. R. RAMAY and M. ZHANG, Biomaterials 24 (2003) 3293

    Article  CAS  Google Scholar 

  27. D. M. LIU, Ceram. Int. 23 (1997) 135

    Article  CAS  Google Scholar 

  28. Y. H. AN. and R. A. DRAUGHN (eds), Mechanical Testing of Bone and the Bone-Implant Interface (CRC Press, London, 2000)

    Google Scholar 

  29. S. C. COWIN (ed) Bone Mechanics Handbook (CRC Press, New York, 2001) pp. 7–9

    Google Scholar 

  30. M. KISER, M. Y. HE and F. W. ZOK, Acta Mater. 47 (1999) 2685

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Bath and Stryker Howmedica Osteonics for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Turner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, Y.H., Turner, I.G. & Miles, A.W. Mechanical characterization of dense calcium phosphate bioceramics with interconnected porosity. J Mater Sci: Mater Med 18, 2319–2329 (2007). https://doi.org/10.1007/s10856-007-3136-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3136-0

Keywords

Navigation