Skip to main content
Log in

Microwave synthesis and properties of NaPO3–SnO–Nb2O5 glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tin niobiophosphate glasses were produced using a domestic microwave oven under a nitrogen flow. The fast microwave melting method and the protective atmosphere prevent the oxidation of SnO. After 10 min of heating, the NaPO3, SnO, and Nb2O5 mixtures are homogeneous and permit to obtain transparent glasses. Three series of glasses with different Sn/Nb ratio were studied to determine the influence of each oxide. The glass transition temperature increases linearly with the amount of Nb2O5 and SnO. These variations are more important for compositions with high metallic cation proportions and with a low Sn/Nb ratio. The same evolutions were observed for the density, Vickers hardness, and elastic modulus while the thermal expansion coefficient decreases monotonously. The simultaneous insertion of SnO and Nb2O5 in phosphate glass matrix leads to a progressive strengthening of the glass network. The chemical durability of the glasses also increases as a function of the amount of metal oxides. We prepared a bulk glass sample with a dissolution rate of about 3.3 × 10−8 g cm−2 min−1 in renewed water conditions at 95 °C. This durability is equivalent to those of the window glass whereas the glass transition temperature remains lower than 485 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nüchter M, Ondruschka B, Bonrathb W, Gumb A (2004) Green Chem 6:128

    Article  Google Scholar 

  2. Sutton WH (1989) Am Ceram Soc Bull 68:376

    CAS  Google Scholar 

  3. Yasuoka M, Nishimura Y, Nagaoka T, Watari K (2006) J Therm Anal Calorim 83:407

    Article  CAS  Google Scholar 

  4. Vaidhyanathan B, Agrawal DK, Roy R (2004) J Am Ceram Soc 87:834

    Article  CAS  Google Scholar 

  5. Vaidhyanathan B, Ganguli M, Rao KJ (1994) J Solid State Chem 113:448

    Article  CAS  Google Scholar 

  6. Wu J-M, Huang H-L (1999) J Non-Cryst Solids 260:116

    Article  CAS  Google Scholar 

  7. Hémono N, Chenu S, Lebullenger R, Rocherullé J, Kéryvin V, Wattiaux A (2010) J Mater Sci 45:2916. doi:10.1007/s10853-010-4283-0

    Article  Google Scholar 

  8. Vaidhyanathan B, Rao KJ (1997) J Solid State Chem 132:349

    Article  CAS  Google Scholar 

  9. Chenu S, Rocherullé J, Lebullenger R, Merdrignac O, Cheviré F, Tessier F, Oudadesse H (2010) J Non-Cryst Solids 356:87

    Article  CAS  Google Scholar 

  10. Ghussn L, Martinelli JR (2004) J Mater Sci 39:1371. doi:10.1023/B:JMSC.0000013899.75724.e1

    Article  CAS  Google Scholar 

  11. Chenu S, Lebullenger R, Rocherullé J (2010) J Mater Sci 45:6505. doi:10.1007/s10853-010-4739-2

    Article  CAS  Google Scholar 

  12. El Jazouli A, Viala JC, Parent C, Le Flem G, Hagenmuller P (1988) J Solid State Chem 73:433

    Article  Google Scholar 

  13. Almeida FJM, Martinelli JR, Partiti CSM (2007) J Non-Cryst Solids 353:4783

    Article  CAS  Google Scholar 

  14. Blessing GV (1990) ASTM STP 1045. ASTM, Philadelphia, p 1045

  15. Takebe H, Baba Y, Kuwabara M (2006) J Non-Cryst Solids 352:3088

    Article  CAS  Google Scholar 

  16. Holland D, Howes AP, Smith ME, Hannon AC (2002) J Phys Condens Matter 14:13609

    Article  CAS  Google Scholar 

  17. Harish Bhat M, Berry FJ, Jiang JZ, Rao KJ (2001) J Non-Cryst Solids 291:93

    Article  CAS  Google Scholar 

  18. Shyu JJ, Yeh CH (2011) J Mater Sci 46:2173. doi:10.1007/s10853-010-5054-7

    Article  CAS  Google Scholar 

  19. Flambard A, Videau JJ, Delevoye L, Cardinal T, Labrugère C, Rivero CA, Couzi M, Montagne L (2008) J Non-Cryst Solids 354:3540

    Article  CAS  Google Scholar 

  20. Barbosa AJ et al (2008) J Phys Condens Matter 20:1

    Article  Google Scholar 

  21. Morena R (2000) J Non-Cryst Solids 263–264:382

    Article  Google Scholar 

  22. Sene FF, Martinelli JR, Gomes L (2004) J Non-Cryst Solids 348:30

    Article  CAS  Google Scholar 

  23. Landau L, Lifchitz E, Kosevich A (1960) Phys Today 13:44

    Article  Google Scholar 

  24. Rocherullé J, Ecolivet C, Poulain M, Verdier P, Laurent Y (1989) J Non-Cryst Solids 108:187

    Article  Google Scholar 

  25. Martinelli JR, Sene FF, Gomes L (2000) J Non-Cryst Solids 263–264:263

    Article  Google Scholar 

  26. Day DE, Wu Z, Ray CS, Hrma P (1998) J Non-Cryst Solids 241:1

    Article  CAS  Google Scholar 

  27. Day DE, Ray CS, Marasinghe GK, Karabulut M Fang X (2001) Final report. doi:10.2172/827407)

  28. Reis ST, Karabulut M, Day DE (2001) J Non-Cryst Solids 292:150

    Article  CAS  Google Scholar 

  29. Xiaoyan XY, Day DE, Long GJ, Brow RK (1997) J Non-Cryst Solids 215:21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Rocherullé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chenu, S., Lebullenger, R. & Rocherullé, J. Microwave synthesis and properties of NaPO3–SnO–Nb2O5 glasses. J Mater Sci 47, 4632–4639 (2012). https://doi.org/10.1007/s10853-012-6328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6328-z

Keywords

Navigation