Skip to main content
Log in

Photostability and solubility improvement of β-cyclodextrin-included tretinoin

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this work, we investigated the influence of β-cyclodextrin on the photostability of tretinoin and compared the photo-chemical stability of tretinoin, either in methanol or complexed with β-cyclodextrin, when exposed both to UV and fluorescent light. The physico-chemical characterization of tretinoin-β-cyclodextrin complexes, prepared by the freeze-drying process, using different tretinoin:β-cyclodextrin molar ratios (1:1 and 1:3), was carried out in solution by phase solubility studies, 1H-NMR spectroscopy, and in solid state by infrared spectroscopy (FT-IR); these analyses confirmed the existence of an inclusion compound. Solubility study results showed that tretinoin solubility was enhanced by inclusion in β-cyclodextrin as a function of increasing concentrations of β-cyclodextrin in aqueous solution at different pH values (i.e., 3.0, 5.5, and 7.0). Moreover, the complexation of the tretinoin with β-cyclodextrin effectively protected the photolabile drug and reduced the degradation of tretinoin induced by UV and fluorescent light, improving its photo-chemical stability in comparison with free drug in methanol. Indeed, dissolved tretinoin in methanol degraded very quickly and completely, while β-cyclodextrin-included tretinoin decomposition was delayed and, after 30 days under UV exposure, the percentage of remaining drug was about 20–25% (depending on the tretinoin concentration). The photodegradation of tretinoin in methanol under fluorescent light was slower: after 5 days of irradiation it reached a photostationary state and intact tretinoin remained constant (6.6%). In conclusion, the β-cyclodextrin complexation always led to a reduction of degradation, depending on the tretinoin:β-cyclodextrin molar ratio and on the drug concentration (0.2 mg/ml or 0.4 mg/ml).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mandy, S.A., Thorne, E.G.: A comparison of the efficacy and safety of tretinoin cream 0.025% and 0.05%. Adv. Ther. 7, 94–99 (1990).

    Google Scholar 

  2. Elias, P.M.: Epidermal effects of retinoids. Supramolecular observations and clinical implications. J. Am. Acad. Dermatol. 15, 797–809 (1986).

    Article  CAS  Google Scholar 

  3. Elbaum, D.J.: Comparison of the stability of topical isotretinoin and topical tretinoin and their efficacy in acne. J. Am. Acad. Dermatol. 19, 486–491 (1988).

    CAS  Google Scholar 

  4. Motto, M.G., Facchine, K.L., Hamburg, P.F., Burinsky, D.J., Dunphy, R., Oyler, A.R., Cotter, M.L.: Separation and identification of retinoic acid photoisomers. J. Chromatogr. 481, 255–262 (1989).

    Article  CAS  Google Scholar 

  5. Connors, K., Amidon, G., Kennon, L.: Chemical Stability of Pharmaceuticals. John Wiley and Sons, New York (1979).

    Google Scholar 

  6. Carstensen, J.: Drug Stability: Principles and Practices, Marcel Dekker, New York (1990).

    Google Scholar 

  7. Deflandre, A., Lang, G.: Photostability assessment of sunscreens. Benzylidene camphor and dibenzoylmethane derivatives. Int. J. Cosmet. Sci. 10, 53–62 (1988).

    Article  CAS  Google Scholar 

  8. Dromgoole, S.H., Maibach, H.I.: Sunscreening agent intolerance: contact and photocontact sensitization and contact urticaria. J. Am. Acad. Dermatol. 22, 1068–1078 (1990).

    Article  CAS  Google Scholar 

  9. Manconi, M., Sinico, C., Valenti, D., Loy, G., Fadda, A.M.: Niosomes as carriers for tretinoin I. Preparation and properties. Int. J. Pharm. 234, 237–248 (2002).

    Article  CAS  Google Scholar 

  10. Manconi, M., Sinico, C., Valenti, D., Loy, G., Fadda, A.M.: Niosomes as carriers for tretinoin II. Influence of vesicular incorporation on tretinoin photostability. Int. J. Pharm. 260, 261–272 (2003).

    Article  CAS  Google Scholar 

  11. Loukas, Y.L., Jayasekera, P., Gregoriadis, G.: Characterization and photoprotection studies of a model γ-cyclodextrin-included photolabile drug entrapped in liposomes incorporating light absorbers. J. Phys. Chem. 99, 11035–11040 (1995).

    Article  CAS  Google Scholar 

  12. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilazation and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996).

    Article  CAS  Google Scholar 

  13. Andersen, F., Bundgaard, H.: Inclusion complexation of metronidazole benzoate with β-cyclodextrin and its depression of anhydrate-hydrate transition in aqueous suspensions. Int. J.Pharm. 19, 189–197 (1984).

    Article  CAS  Google Scholar 

  14. Loukas, Y.L., Vraka, V., Gregoriadis, G.: Fluorimetric studies of the formation of riboflavin-β-cyclodextrin inclusion complex: determination of the stability constant by use of a non-linear leastsquares model. J. Pharm. Pharmacol. 49, 127–130 (1997).

    CAS  Google Scholar 

  15. Nalluri, B.N., Chowdary, K.P.R., Murthy, K.V.R., Hayman, A.R., Becket, G.: Physicochemical characterization and dissolution properties of nimesulide-cyclodextrin binary systems. AAPS Pharm. Sci. Tech. 4(1), E2 (2003).

    Article  Google Scholar 

  16. Scalia, S., Casolari, A., Iaconinoto, A., Simeoni, S.: Comparative studies of the influence of cyclodextrins on the stability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate. J. Pharm. Biomed. Anal. 30, 1181– (2002).

    Article  CAS  Google Scholar 

  17. Mukne, P., Nagarsenker, M.S.: Triamterene-β-cyclodextrin systems: preparation, characterization and in vivo evaluation. AAPS Pharm. Sci. Tech. 5(1), article 19, E19 (2004).

  18. Duchêne, D., Wouessidjewe, D.: Pharmaceutical uses of cyclodextrins and derivatives. Drug Dev. Ind. Pharm. 16, 2487–2499 (1990).

    Google Scholar 

  19. Frömming, K.H., Szejtli, J.: Cyclodextrins in Pharmacy, Topics in Inclusion Science, Kluwer, Dordrecht (1994).

    Google Scholar 

  20. Anadolou, R.Y., Sen, T., Tarimci, N., Birol, A., Erdem, C.: Improved efficacy and tolerability of retinoic acid in acne vulgaris: a new topical formulation with cyclodextrin complex ψ. J. Eur. Acad. Dermatol. Venereol. 18, 416–421 (2004).

    Article  Google Scholar 

  21. Dollo, A.G., Le Corre, P., Chevanne, F., Le Verge, R.: Inclusion complexation of amide-typed local anaesthetics with beta-cyclodextrins and its derivatives. Int. J. Pharm. 131, 219–228 (1996).

    Article  CAS  Google Scholar 

  22. Barbato, F., Cappello, B., La Rotonda, M.I., Miro, A., Quaglia, F.: Diclofenac β-cyclodextrin binary systems: a study in solution and in the solid state. J. Incl. Phenom. 46, 179–185 (2003).

    Article  CAS  Google Scholar 

  23. Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–212 (1965).

    CAS  Google Scholar 

  24. Montassier, P., Duchêne, D., Poelman, M.C.: Inclusion complexes of tretinoin with cyclodextrins. Int. J. Pharm. 153, 199–209 (1997).

    Article  CAS  Google Scholar 

  25. Djedaini, F., Lin, S.Z., Perly, B.: Nuclear magnetic resonance of cyclodextrins, derivatives and inclusion compounds. In: Duchêne, D (ed.) New trends in Cyclodextrin and Derivatives, pp. 217–246. Editions de Santè, Paris, (1991).

    Google Scholar 

  26. Pose-Vilarnovo, B., Perdomo-Lòpez, I., Echezarreta-Lopez, M., Schroth-Pardo, P., Estrada, E., Torres-Labandeira, J.J.: Eur. J. Pharm. Sci. 13, 325–331 (2001).

    Article  CAS  Google Scholar 

  27. Ficarra, R., Ficarra, P., Di Bella, M.R., Raneri, D., Tommasini, S., Calabro, M.L., Gamberini, M.C., Rustichelli, C.: Study of beta-blockers/beta-cyclodextrins inclusion complex by NMR, DSC, X-ray and SEM investigation.. J. Pharm. Biomed. Anal. 23, 33–40 (2000).

    Article  CAS  Google Scholar 

  28. Manca, M.L., Zaru, M., Ennas, G., Valenti, D., Sinico, C., Loy, G., Fadda, A.M.: Diclofenac-β-cyclodextrin binary systems: physicochemical characterization and in vitro dissolution and diffusion studies. AAPS Pharm. Sci. Tech. 6(3), E464 (2005).

    Article  Google Scholar 

  29. Noy, N.: The ionization behavior of retinoic acid in aqueous enviroments and bound to serum albumin. Biochim. Biophys. Acta. Biomembr. 1106(1), 151–158 (1992).

    Article  CAS  Google Scholar 

  30. Guo, Q.-X., Ren, T., Fang, Y.P., Liu, Y.-C.: Binding of vitamin A by β-cyclodextrin and heptakis(2,6-O-dimethyl)-β-cyclodextrin. J. Incl. Phenom. Molec. Recogn. Chem. 22, 251–256 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Sinico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caddeo, C., Manconi, M., Valenti, D. et al. Photostability and solubility improvement of β-cyclodextrin-included tretinoin. J Incl Phenom Macrocycl Chem 59, 293–300 (2007). https://doi.org/10.1007/s10847-007-9326-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-007-9326-z

Keywords

Navigation