Skip to main content

Advertisement

Log in

Site-specific and linkage analyses of fucosylated N-glycans on haptoglobin in sera of patients with various types of cancer: possible implication for the differential diagnosis of cancer

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Fucosylation is an important type of glycosylation involved in cancer, and fucosylated proteins could be employed as cancer biomarkers. Previously, we reported that fucosylated N-glycans on haptoglobin in the sera of patients with pancreatic cancer were increased by lectin-ELISA and mass spectrometry analyses. However, an increase in fucosylated haptoglobin has been reported in various types of cancer. To ascertain if characteristic fucosylation is observed in each cancer type, we undertook site-specific analyses of N-glycans on haptoglobin in the sera of patients with five types of operable gastroenterological cancer (esophageal, gastric, colon, gallbladder, pancreatic), a non-gastroenterological cancer (prostate cancer) and normal controls using ODS column LC-ESI MS. Haptoglobin has four potential glycosylation sites (Asn184, Asn207, Asn211, Asn241). In all cancer samples, monofucosylated N-glycans were significantly increased at all glycosylation sites. Moreover, difucosylated N-glycans were detected at Asn 184, Asn207 and Asn241 only in cancer samples. Remarkable differences in N-glycan structure among cancer types were not observed. We next analyzed N-glycan alditols released from haptoglobin using graphitized carbon column LC-ESI MS to identify the linkage of fucosylation. Lewis-type and core-type fucosylated N-glycans were increased in gastroenterological cancer samples, but only core-type fucosylated N-glycan was relatively increased in prostate cancer samples. In metastatic prostate cancer, Lewis-type fucosylated N-glycan was also increased. These data suggest that the original tissue/cell producing fucosylated haptoglobin is different in each cancer type and linkage of fucosylation might be a clue of primary lesion, thereby enabling a differential diagnosis between gastroenterological cancers and non-gastroenterological cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LC-ESI MS:

Liquid chromatography-electrospray ionization-mass spectrometry

Hpt:

Haptoglobin

NV:

Normal volunteers

Eso:

Esophageal cancer

Gas:

Gastric cancer

Col:

Colon cancer

Pan:

Pancreatic cancer

Gal:

Gallbladder cancer

Pro:

Prostate cancer

References

  1. Becker, D.J., Lowe, J.B.: Fucose: biosynthesis and biological function in mammals. Glycobiology 13, 41R–53R (2003)

    Article  CAS  PubMed  Google Scholar 

  2. Hakomori, S.: Aberrant glycosylation in tumors and tumor-associated carbohydrate antigen. Adv. Cancer Res. 52, 257–331 (1989)

    Article  CAS  PubMed  Google Scholar 

  3. Miyoshi, E., Moriwaki, K., Nakagawa, T.: Biological function of fucosylation in cancer biology. J. Biochem. 143, 725–729 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. Dempsey, E., Rudd, P.M.: Acute phase glycoproteins: bystanders or participants in carcinogenesis? Ann. N. Y. Acad. Sci. 1253, 122–132 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. Okuyama, N., Ide, Y., Nakano, M., Nakagawa, T., Yamanaka, K., Moriwaki, K., Murata, K., Ohigashi, H., Yokoyama, S., Eguchi, H., Ishikawa, O., Ito, T., Kato, M., Kasahara, S., Gu, J., Taniguchi, N., Miyoshi, E.: Fucosylated haptoglobin is a novel marker for pancreatic cancer: a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation. Int. J. Cancer 118, 2803–2808 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. Nakano, M., Nakagawa, T., Ito, T., Kitada, T., Hijioka, T., Kasahara, A., Tajiri, M., Wada, Y., Taniguchi, N., Miyoshi, E.: Site-specific analysis of N-glycans on haptoglobin in sera of patients with pancreatic cancer: a novel approach for the development of tumor markers. Int. J. Cancer 122, 2301–2309 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. Black, J.A., Chan, G.F., Hew, C.L., Dixon, G.H.: Gene action in the human haptoglobins. III. Isolation of the α-chains as single gene products. Isolation, molecular weight, and amino acid composition of α and β chains. Can. J. Biochem. 48, 123–132 (1970)

    Article  CAS  PubMed  Google Scholar 

  8. Kurosky, A., Barnett, D.R., Lee, T.H., Touchstone, B., Hay, R.E., Arnott, M.S., Bowman, B.H., Fitch, W.M.: Covalent structure of human haptoglobin: a serine protease homolog. Proc. Natl. Acad. Sci. U. S. A. 77, 3388–3392 (1980)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferens-Sieczkowska, M., Olczak, M.: Carbohydrate structures of haptoglobin in sera of healthy people and a patient with congenital disorder of glycosylation. Z. Naturforsch. C 56, 122–131 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. He, Z., Aristoteli, L.P., Kritharides, L., Garner, B.: HPLC analysis of discrete haptoglobin isoform N-linked oligosaccharides following 2D-PAGE isolation. Biochem. Biophys. Res. Commun. 343, 496–503 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Noda, K., Miyoshi, E., Gu, J., Gao, C.X., Nakahara, S., Kitada, T., Honke, K., Suzuki, K., Yoshihara, H., Yoshikawa, K., Kawano, K., Tonetti, M., Kasahara, A., Hori, M., Hayashi, N., Taniguchi, N.: Relationship between elevated FX expression and increased production of GDP-L-fucose, a common donor substrate for fucosylation in human hepatocellular carcinoma and hepatoma cell lines. Cancer Res. 63, 6282–6289 (2003)

    CAS  PubMed  Google Scholar 

  12. Ang, I.L., Poon, T.C., Lai, P.B., Chan, A.T., Ngai, S.M., Hui, A.Y., Johnson, P.J., Sung, J.J.: Study of serum haptoglobin and its glycoforms in the diagnosis of hepatocellular carcinoma: a glycoproteomic approach. J. Proteome Res. 5, 2691–700 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, S., Shu, H., Luo, K., Kang, X., Zhang, Y., Lu, H., Liu, Y.: N-linked glycan changes of serum haptoglobin β chain in liver disease patients. Mol. Biosyst. 7, 1621–1628 (2011)

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, S., Jiang, K., Sun, C., Lu, H., Liu, Y.: Quantitative analysis of site-specific N-glycans on sera haptoglobin β chain in liver diseases. Acta Biochim Biophys Sin (Shanghai) 45, 1021–1029 (2013)

    Article  CAS  Google Scholar 

  15. Zhu, J., Lin, Z., Wu, J., Yin, H., Dai, J., Feng, Z., Marrero, J., Lubman, D.M.: Analysis of serum haptoglobin fucosylation in hepatocellular carcinoma and liver cirrhosis of different etiologies. J. Proteome Res. 13, 2986–2997 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoagland, L.F., Campa, M.J., Gottlin, E.B., Herndon, J.E., Patz, E.F.: Haptoglobin and posttranslational glycan-modified derivatives as serum biomarkers for the diagnosis of nonsmall cell lung cancer. Cancer 110, 2260–2268 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. Arnold, J.N., Saldova, R., Hamid, U.M., Rudd, P.M.: Evaluation of the serum N-linked glycome for the diagnosis of cancer and chronic inflammation. Proteomics 8, 3284–3293 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. Tsai, H.Y., Boonyapranai, K., Sriyam, S., Yu, C.J., Wu, S.W., Khoo, K.H., Phutrakul, S., Chen, S.T.: Glycoproteomics analysis to identify a glycoform on haptoglobin associated with lung cancer. Proteomics 11, 2162–2170 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. Váradi, C., Mittermayr, S., Szekrényes, Á., Kádas, J., Takacs, L., Kurucz, I., Guttman, A.: Analysis of haptoglobin N-glycome alterations in inflammatory and malignant lung diseases by capillary electrophoresis. Electrophoresis 34, 2287–2294 (2013)

    Article  PubMed  Google Scholar 

  20. Zhao, J., Patwa, T.H., Qiu, W., Shedden, K., Hinderer, R., Misek, D.E., Anderson, M.A., Simeone, D.M., Lubman, D.M.: Glycoprotein microarrays with multi-lectin detection: unique lectin binding patterns as a tool for classifying normal, chronic pancreatitis and pancreatic cancer sera. J. Proteome Res. 6, 1864–61874 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. Matsumoto, H., Shinzaki, S., Narisada, M., Kawamoto, S., Kuwamoto, K., Moriwaki, K., Kanke, F., Satomura, S., Kumada, T., Miyoshi, E.: Clinical application of a lectin-antibody ELISA to measure fucosylated haptoglobin in sera of patients with pancreatic cancer. Clin. Chem. Lab. Med. 48, 505–512 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. Lin, Z., Simeone, D.M., Anderson, M.A., Brand, R.E., Xie, X., Shedden, K.A., Ruffin, M.T., Lubman, D.M.: Mass spectrometric assay for analysis of haptoglobin fucosylation in pancreatic cancer. J. Proteome Res. 10, 2602–2611 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sarrats, A., Saldova, R., Pla, E., Fort, E., Harvey, D.J., Struwe, W.B., de Llorens, R., Rudd, P.M., Peracaula, R.: Glycosylation of liver acute-phase proteins in pancreatic cancer and chronic pancreatitis. Proteomics Clin. Appl. 4, 432–448 (2010)

    Article  CAS  PubMed  Google Scholar 

  24. Park, S.Y., Lee, S.H., Kawasaki, N., Itoh, S., Kang, K., Hee Ryu, S., Hashii, N., Kim, J.M., Kim, J.Y., Hoe Kim, J.: α1-3/4 fucosylation at Asn 241 of β-haptoglobin is a novel marker for colon cancer: a combinatorial approach for development of glycan biomarkers. Int. J. Cancer 130, 2366–2376 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. Takeda, Y., Shinzaki, S., Okudo, K., Moriwaki, K., Murata, K., Miyoshi, E.: Fucosylated haptoglobin is a novel type of cancer biomarker linked to the prognosis after an operation in colorectal cancer. Cancer 118, 3036–3043 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. Bones, J., Byrne, J.C., O’Donoghue, N., McManus, C., Scaife, C., Boissin, H., Nastase, A., Rudd, P.M.: Glycomic and glycoproteomic analysis of serum from patients with stomach cancer reveals potential markers arising from host defense response mechanisms. J. Proteome Res. 10, 1246–1265 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. Thompson, S., Dargan, E., Turner, G.A.: Increased fucosylation and other carbohydrate changes in haptoglobin in ovarian cancer. Cancer Lett. 66, 43–48 (1992)

    Article  CAS  PubMed  Google Scholar 

  28. Turner, G.A., Goodarzi, M.T., Thompson, S.: Glycosylation of alpha-1-proteinase inhibitor and haptoglobin in ovarian cancer: evidence for two different mechanisms. Glycoconj. J. 12, 211–218 (1995)

    Article  CAS  PubMed  Google Scholar 

  29. Saldova, R., Royle, L., Radcliffe, C.M., Abd Hamid, U.M., Evans, R., Arnold, J.N., Banks, R.E., Hutson, R., Harvey, D.J., Antrobus, R., Petrescu, S.M., Dwek, R.A., Rudd, P.M.: Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG. Glycobiology 17, 1344–1356 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. Fujimura, T., Shinohara, Y., Tissot, B., Pang, P.C., Kurogochi, M., Saito, S., Arai, Y., Sadilek, M., Murayama, K., Dell, A., Nishimura, S., Hakomori, S.: Glycosylation status of haptoglobin in sera of patients with prostate cancer vs. benign prostate disease or normal subjects. Int. J. Cancer 122, 39–49 (2008)

    Article  CAS  PubMed  Google Scholar 

  31. Yoon, S.J., Park, S.Y., Pang, P.C., Gallagher, J., Gottesman, J.E., Dell, A., Kim, J.H., Hakomori, S.: N-glycosylation status of beta-haptoglobin in sera of patients with prostate cancer vs. benign prostate diseases. Int. J. Oncol. 36, 193–203 (2010)

    Article  CAS  PubMed  Google Scholar 

  32. Kazuno, S., Fujimura, T., Arai, T., Ueno, T., Nagao, K., Fujime, M., Murayama, K.: Multi-sequential surface plasmon resonance analysis of haptoglobin-lectin complex in sera of patients with malignant and benign prostate diseases. Anal. Biochem. 419, 241–249 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. Abbott, K.L., Aoki, K., Lim, J.M., Porterfield, M., Johnson, R., O’Regan, R.M., Wells, L., Tiemeyer, M., Pierce, M.: Targeted glycoproteomic identification of biomarkers for human breast carcinoma. J. Proteome Res. 7, 1470–1480 (2008)

    Article  CAS  PubMed  Google Scholar 

  34. Abd Hamid, U.M., Royle, L., Saldova, R., Radcliffe, C.M., Harvey, D.J., Storr, S.J., Pardo, M., Antrobus, R., Chapman, C.J., Zitzmann, N., Robertson, J.F., Dwek, R.A., Rudd, P.M.: A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression. Glycobiology 18, 1105–1118 (2008)

    Article  CAS  PubMed  Google Scholar 

  35. Wada, Y., Tajiri, M., Yoshida, S.: Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal. Chem. 76, 6560–6565 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. Wilson, N.L., Schulz, B.L., Karlsson, N.G., Packer, N.H.: Sequential analysis of N- and O-linked glycosylation of 2D-PAGE separated glycoproteins. J. Proteome Res. 1, 521–529 (2002)

    Article  CAS  PubMed  Google Scholar 

  37. Nakano, M., Saldanha, R., Göbel, A., Kavallaris, M., Packer, N.H.: Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells. Mol. Cell. Proteomics (2011). doi:10.1074/mcp.M111.009001

    PubMed  PubMed Central  Google Scholar 

  38. Nakagawa, T., Uozumi, N., Nakano, M., Mizuno-Horikawa, Y., Okuyama, N., Taguchi, T., Gu, J., Kondo, A., Taniguchi, N., Miyoshi, E.: Fucosylation of N-glycans regulates the secretion of hepatic glycoproteins into bile ducts. J. Biol. Chem. 281, 29797–29806 (2006)

    Article  CAS  PubMed  Google Scholar 

  39. Kaneko, M., Kudo, T., Iwasaki, H., Ikehara, Y., Nishihara, S., Nakagawa, S., Sasaki, K., Shiina, T., Inoko, H., Saitou, N., Narimatsu, H.: Alpha1,3-fucosyltransferase IX (Fuc-TIX) is very highly conserved between human and mouse; molecular cloning, characterization and tissue distribution of human Fuc-TIX. FEBS Lett. 452, 237–242 (1999)

    Article  CAS  PubMed  Google Scholar 

  40. Comelli, E.M., Head, S.R., Gilmartin, T., Whisenant, T., Haslam, S.M., North, S.J., Wong, N.K., Kudo, T., Narimatsu, H., Esko, J.D., Drickamer, K., Dell, A., Paulson, J.C.: A focused microarray approach to functional glycomics: transcriptional regulation of the glycome. Glycobiology 16, 117–131 (2006)

    Article  CAS  PubMed  Google Scholar 

  41. Fujita, K., Shimomura, M., Uemura, M., Nakata, W., Sato, M., Nagahara, A., Nakai, Y., Takamatsu, S., Miyoshi, E.: Serum fucosylated haptoglobin as a novel prognostic biomarker predicting high-gleason prostate cancer. Prostate 74, 1052–1058 (2014)

    Article  CAS  PubMed  Google Scholar 

  42. Barthel, S.R., Wiese, G.K., Cho, J., Opperman, M.J., Hays, D.L., Siddiqui, J., Pienta, K.J., Furie, B., Dimitroff, C.J.: Alpha 1,3 fucosyltransferases are master regulators of prostate cancer cell trafficking. Proc. Natl. Acad. Sci. U. S. A. 106, 19491–19496 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, J., Guillebon, A.D., Hsu, J.W., Barthel, S.R., Dimitroff, C.J., Lee, Y.F., King, M.R.: Human fucosyltransferase 6 enables prostate cancer metastasis to bone. Br. J. Cancer 109, 3014–3022 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miyako Nakano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 335 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, S., Sugiyama, T., Shimomura, M. et al. Site-specific and linkage analyses of fucosylated N-glycans on haptoglobin in sera of patients with various types of cancer: possible implication for the differential diagnosis of cancer. Glycoconj J 33, 471–482 (2016). https://doi.org/10.1007/s10719-016-9653-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9653-7

Keywords

Navigation