Skip to main content

Advertisement

Log in

The oncofetal Thomsen–Friedenreich carbohydrate antigen in cancer progression

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The oncofetal Thomsen–Friedenreich carbohydrate antigen (Galβ1-3GalNAcα1-Ser/Thr TF or T antigen) is a pan-carcinoma antigen highly expressed by about 90% of all human carcinomas. Its broad expression and high specificity in cancer have attracted many investigations into its potential use in cancer diagnosis and immunotherapy. Over the past few years increasing evidence suggests that the increased TF occurrence in cancer cells may be functionally important in cancer progression by allowing increased interaction/communication of the cells with endogenous carbohydrate-binding proteins (lectins), particularly the members of the galactoside-binding galectin family. This review focuses on the recent progress in understanding of the regulation and functional significance of increased TF occurrence in cancer progression and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kim, Y.S., Gum, J. Jr, Brockhausen, I.: Mucin glycoproteins in neoplasia. Glycoconj. J. 13, 693–707 (1996)

    PubMed  CAS  Google Scholar 

  2. Kim, Y.J., Varki, A.: Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconj. J 14, 569–576 (1997)

    PubMed  CAS  Google Scholar 

  3. Ono, M., Hakomori, S.: Glycosylation defining cancer cell motility and invasiveness. Glycoconj. J. 20, 71–78 (2004)

    PubMed  CAS  Google Scholar 

  4. Springer, G.F.: Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J. Mol. Med. 75, 594–602 (1997)

    PubMed  CAS  Google Scholar 

  5. Campbell, B.J., Finnie, I.A., Hounsell, E.F., Rhodes, J.M.: Direct demonstration of increased expression of Thomsen-Friedenreich (TF) antigen in colonic adenocarcinoma and ulcerative colitis mucin and its concealment in normal mucin. J. Clin. Invest. 95, 571–576 (1995)

    PubMed  CAS  Google Scholar 

  6. Springer, G.F.: T and Tn, general carcinoma autoantigens. Science 224, 1198–1206 (1984)

    PubMed  CAS  Google Scholar 

  7. Hanisch, F.G., Baldus, S.E.: The Thomsen–Friedenreich (TF) antigen: a critical review on the structural, biosynthetic and histochemical aspects of a pancarcinoma-associated antigen. Histol. Histopathol. 12, 263–281 (1997)

    PubMed  CAS  Google Scholar 

  8. Yuan, M., Itzkowitz, S.H., Boland, C.R., Kim, Y.D., Tomita, J.T., Palekar, A., Bennington, J.L., Trump, B.F., Kim, Y.S.: Comparison of T-antigen expression in normal, premalignant, and malignant human colonic tissue using lectin and antibody immunohistochemistry. Cancer Res. 46, 4841–4847 (1986)

    PubMed  CAS  Google Scholar 

  9. Itzkowitz, S.H., Yuan, M., Montgomery, C.K., Kjeldsen, T., Takahashi, H.K., Bigbee, W.L., Kim, Y.S.: Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer. Cancer Res 49, 197–204 (1989)

    PubMed  CAS  Google Scholar 

  10. Baldus, S.E., Zirbes, T.K., Hanisch, F.G., Kunze, D., Shafizadeh, S.T., Nolden, S., Monig, S.P., Schneider, P.M., Karsten, U., Thiele, J., Holscher, A.H., Dienes H.P.: Thomsen–Friedenreich antigen presents as a prognostic factor in colorectal carcinoma: a clinicopathologic study of 264 patients. Cancer 88, 1536–1543 (2000)

    PubMed  CAS  Google Scholar 

  11. Shamsuddin, A.M., Tyner, G.T., Yang, G.Y.: Common expression of the tumour marker D-Galactose-ß-[1–3]-N-Acetyl-D-Galactosamine by different adenocarcinomas: evidence of field effect phenomenon. Cancer Res. 55, 149–152 (1995)

    PubMed  CAS  Google Scholar 

  12. Desai, P.R., Ujjainwala, L.H., Carlstedt, S.C., Springer, G.F.: Anti-Thomsen–Friedenreich (T) antibody-based ELISA and its application to human breast carcinoma detection. J. Immunol. Methods 188, 75–85 (1995)

    Google Scholar 

  13. Kumar, S.R., Sauter, E.R., Quinn, T.P., Deutscher, S.L.: Thomsen–Friedenreich and Tn antigens in nipple fluid: carbohydrate biomarkers for breast cancer detection. Clin. Cancer Res. 11, 6868–6871 (2005)

    PubMed  CAS  Google Scholar 

  14. Coon, J.S., Weinstein, R.S., Summers, J.L.: Blood group precursor T-antigen expression in human urinary bladder carcinoma. Am. J. Clin. Pathol. 77, 692–699 (1982)

    PubMed  CAS  Google Scholar 

  15. Limas, C., Lange P.: T-antigen in normal and neoplastic urothelium. Cancer 58, 1236–1245 (1986)

    PubMed  CAS  Google Scholar 

  16. Janssen, T., Petein, M., Van Velthoven, R., Van Leer, P., Fourmarier, M., Vanegas, J.P., Danguy, A., Schulman, C., Pasteels, J.L., Kiss, R.: Differential histochemical peanut agglutinin stain in benign and malignant human prostate tumors: relationship with prostatic specific antigen immunostain and nuclear DNA content. Human Pathol. 27, 1341–1347 (1996)

    CAS  Google Scholar 

  17. Zhang, S., Zhang, H.S., Cordon-Cardo, C., Reuter, V.E., Singhal, A.K., Lloyd, K.O., Livingston, P.O.: Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens. Int. J. Cancer 73, 50–56 (1997)

    PubMed  CAS  Google Scholar 

  18. Cao, Y., Stosiek, P., Springer, G.F., Karsten, U.: Thomsen–Friedenreich-related carbohydrate antigens in normal adult human tissue: a systematic and comparative study. Histochem. Cell Biol. 106, 97–207 (1996)

    Google Scholar 

  19. Ghazizadeh, M., Oguro, T., Sasaki, Y., Aihara, K., Araki, T., Springer, G.F.: Immunohistochemical and ultrastructural localization of T antigen in ovarian tumors. Am. J. Clin. Pathol. 93, 315–321 (1990)

    PubMed  CAS  Google Scholar 

  20. Sotozono, M.A., Okada, Y., Tsuji, T.: The Thomsen–Friedenreich antigen-related carbohydrate antigens in human gastric intestinal metaplasia and cancer. J. Histochem. Cytochem. 42, 1575–1584 (1994)

    PubMed  CAS  Google Scholar 

  21. Baldus, S.E., Zirbes, T.K., Glossmann, J., Fromm, S., Hanisch, F.G., Monig, S.P., Schroder, W., Schneider, P.M., Flucke, U., Karsten, U., Thiele, J., Holscher, A.H., Dienes, H.P.: Immunoreactivity of monoclonal antibody BW835 represents a marker of progression and prognosis in early gastric cancer. Oncology 61, 147–155 (2001)

    PubMed  CAS  Google Scholar 

  22. Moriyama, H., Nakano, H., Igawa, M., Nihira, H.: T antigen expression in benign hyperplasia and adenocarcinoma of the prostate. Urol. Int. 42, 120–123 (1987)

    Article  PubMed  CAS  Google Scholar 

  23. Wolf, M.F., Ludwig, A., Fritz, P., Schumacher, K.: Increased expression of Thomsen–Friedenreich antigens during tumor progression in breast cancer patients. Tumour Biol. 9, 190–194 (1988)

    Article  PubMed  CAS  Google Scholar 

  24. Langkilde, N.C., Wolf, H., Clausen, H., Kjeldsen, T., Orntoft, T.F.: Nuclear volume and expression of T-antigen, sialosyl-Tn-antigen, and Tn-antigen in carcinoma of the human bladder. Relation to tumor recurrence and progression. Cancer 69, 219–227 (1992)

    PubMed  CAS  Google Scholar 

  25. Cao, Y., Karsten, U.R., Liebrich, W., Haensch, W., Springer, G.F., Schlag, P.M.: Expression of Thomsen–Friedenreich-related antigens in primary and metastatic colorectal carcinomas. A reevaluation. Cancer 76, 1700–1708 (1995)

    PubMed  CAS  Google Scholar 

  26. Samuel, J., Longenecker, B.M.: Development of active specific immunotherapeutic agents based on cancer-associated mucins. Pharm. Biotechnol. 6, 875–890 (1995)

    PubMed  CAS  Google Scholar 

  27. Springer, G.F., Tegtmeyer, H.: Origin of anti-Thomsen–Friedenreich (T) and Tn agglutinins in man and in White Leghorn chicks. Br. J. Haematol. 47, 453–460 (1981)

    PubMed  CAS  Google Scholar 

  28. Kurtenkov, O., Miljukhina, L., Smorodin, J., Klaamas, K., Bovin, N., Ellamaa, M., Chuzmarov, V.: Natural IgM and IgG antibodies to Thomsen–Friedenreich (T) antigen in serum of patients with gastric cancer and blood donors–relation to Lewis (a,b) histo-blood group phenotype. Acta Oncol. 38, 939–943 (1999)

    PubMed  CAS  Google Scholar 

  29. Adluri, S., Helling, F., Ogata, S., Zhang, S., Itzkowitz, S.H., Lloyd, K.O., Livingston, P.O.: Immunogenicity of synthetic TF-KLH (keyhole limpet hemocyanin) and sTn-KLH conjugates in colorectal carcinoma patients. Cancer Immunol. Immunother. 41, 185–192 (1995)

    PubMed  CAS  Google Scholar 

  30. MacLean, G.D., Bowen-Yacyshyn, M.B., Samuel, J., Meikle, A., Stuart, G., Nation, J., Poppema, S., Jerry, M., Koganty, R., Wong, T., et al.: Active immunization of human ovarian cancer patients against a common carcinoma (Thomsen–Friedenreich) determinant using a synthetic carbohydrate antigen. J. Immunother. 11, 292–305 (1992)

    Article  PubMed  CAS  Google Scholar 

  31. Yacyshyn, M.B., Poppema, S., Berg, A., MacLean, G.D., Reddish, M.A., Meikle, A., Longenecker, B.M.: CD69+ and HLA-DR+ activation antigens on peripheral blood lymphocyte populations in metastatic breast and ovarian cancer patients: correlations with survival following active specific immunotherapy. Int J Cancer 61, 470–474 (1995)

    PubMed  CAS  Google Scholar 

  32. Slovin, S.F., Ragupathi, G., Musselli, C., Fernandez, C., Diani, M., Verbel, D., Danishefsky, S., Livingston, P., Scher, H.I.: Thomsen–Friedenreich (TF) antigen as a target for prostate cancer vaccine: clinical trial results with TF cluster (c)-KLH plus QS21 conjugate vaccine in patients with biochemically relapsed prostate cancer. Cancer Immunol. Immunother. 54, 694–702 (2005)

    PubMed  CAS  Google Scholar 

  33. Ragupathi, G.: Carbohydrate antigens as targets for active specific immunotherapy. Cancer Immunol. Immunother. 43, 152–7 (1996)

    PubMed  CAS  Google Scholar 

  34. Xu, Y., Gendler, S.J., Franco, A.: Designer glycopeptides for cytotoxic T cell-based elimination of carcinomas. J. Exp. Med. 99, 707–16 (2004)

    Google Scholar 

  35. Kurtenkov, O., Klaamas, K., Rittenhouse-Olson, K., Vahter, L., Sergejev, B., Miljukhina, L., Shljapnikova, L.: IgG immune response to tumor-associated carbohydrate antigens (TF, Tn, alphaGal) in patients with breast cancer: impact of neoadjuvant chemotherapy and relation to the survival. Exp. Oncol. 27, 136–140 (2005)

    PubMed  CAS  Google Scholar 

  36. Ju, T., Brewer, K., D’Souza, A., Cummings, R.D., Canfield, W.M.: Cloning and expression of human core 1 beta1,3-galactosyltransferase. J. Biol. Chem. 277, 178–186 (2002)

    PubMed  CAS  Google Scholar 

  37. Ju, T., Cummings, R.D., Canfield, W.M.: Purification, characterization, and subunit structure of rat core 1 Beta1,3-galactosyltransferase. J. Biol. Chem. 277, 169–77 (2002)

    PubMed  CAS  Google Scholar 

  38. Lowe, J.B., Marth, J.D.: A genetic approach to Mammalian glycan function. Annu. Rev. Biochem. 72, 643–91 (2003)

    PubMed  CAS  Google Scholar 

  39. Dahiya, R., Itzkowitz, S.H., Byrd, J.C., Kim, Y.S.: Mucin oligosaccharide biosynthesis in human colonic cancerous tissues and cell lines. Cancer 70, 1467–1476 (1992)

    PubMed  CAS  Google Scholar 

  40. Brockhausen, I., Yang, J.M., Burchell, J., Whitehouse, C., Taylor-Papadimitriou, J.: Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur J Biochem 233, 607–17 (1995)

    PubMed  CAS  Google Scholar 

  41. Whitehouse, C., Burchell, J., Gschmeissner, S., Brockhausen, I., Lloyd, K.O.: Taylor-Papadimitriou J. A transfected sialyltransferase that is elevated in breast cancer and localizes to the medial/trans-Golgi apparatus inhibits the development of core-2 based O-glycans. J Cell Biol 137, 1229–1241 (1997)

    PubMed  CAS  Google Scholar 

  42. Martinez-Menarguez, J.A., Ballesta, J., Aviles, M., Madrid, J.F., Castells, M.T.: Influence of sulphate groups in the binding of peanut agglutinin. Histochemical demonstration with light- and electron-microscopy. Histochem J 24, 207–216 (1992)

    PubMed  CAS  Google Scholar 

  43. Kuhns, W., Jain, R.K., Matta, K.L., Paulsen, H., Baker, M.A., Geyer, R., Brochhausen, I.: Characterization of a novel mucin suphotransferase activity synthesizing suphated O-glycan core 1, 3-suphate-galβ1-GalNAcα-R. Glycobiology 5, 689–697 (1995)

    PubMed  CAS  Google Scholar 

  44. Kumamoto, K., Goto, Y., Sekikawa, K., Takenoshita, S., Ishida, N., Kawakita, M., Kannagi, R.: Increased expression of UDP-galactose transporter messenger RNA in human colon cancer tissues and its implication in synthesis of Thomsen–Friedenreich antigen and sialyl Lewis A/X determinants. Cancer Res. 61, 4620–4627 (2001)

    PubMed  CAS  Google Scholar 

  45. Rivinoja, A., Kokkonen, N., Kellokumpu, I., Kellokumpu, S.: Elevated Golgi pH in breast and colorectal cancer cells correlates with the expression of oncofetal carbohydrate T-antigen. J. Cell Physiol. 208, 167–74 (2006)

    PubMed  CAS  Google Scholar 

  46. Axelsson, M.A., Karlsson N.G., Steel D.M., Ouwendijk J., Nilsson T., Hansson G.C.: Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltransferases and changes in the O-glycosylation of mucins. Glycobiology 11, 633–644 (2001)

    PubMed  CAS  Google Scholar 

  47. Ju, T., Cummings, R.D.: A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc. Natl. Acad. Sci. U.S.A. 99, 16613–16618 (2002)

    PubMed  CAS  Google Scholar 

  48. Ju, T., Cummings, R.D.: Protein glycosylation: chaperone mutation in Tn syndrome. Nature 437, 1252 (2005)

    PubMed  CAS  Google Scholar 

  49. Schietinger, A., Philip M., Yoshida B.A., Azadi P., Liu H., Meredith S.C., Schreiber H.: A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 314, 304-308 (2006)

    PubMed  CAS  Google Scholar 

  50. Ryder, S.D., Smith, J.A., Rhodes J.M.: Peanut lectin is a mitogen for normal human colonic epithelium and HT29 colorectal cancer cells. J. Natl. Cancer Inst. 84, 1410–1416 (1992)

    PubMed  CAS  Google Scholar 

  51. Ryder, S.D., Parker, N., Eccleston, D., Haqqani, M.T., Rhodes J.M.: Peanut lectin (PNA) stimulates proliferation in colonic explants from patients with ulcerative colitis, Crohn’s disease and colonic polyps. Gastroenterology 106, 117–124 (1994)

    PubMed  CAS  Google Scholar 

  52. Yu, L.G., Milton, J.D., Fernig, D.G., Rhodes, J.M.: Opposite effects on human colon cancer cell proliferation of two dietary Thomsen–Friedenreich antigen-binding lectins. J. Cell. Physiol. 186, 282–287 (2001)

    PubMed  CAS  Google Scholar 

  53. Yu, L.G., Fernig, D.G., White, M.R.H., Spiller, D.G., Evans, R.C., Appleton, P., Grierson I., Smith J.A., Davies H., Gerasimenko O.V., Peterson O.H., Milton, J.D., Rhodes, J.M.: Edible mushroom (Agaricus bisporus) lectin, which reversibly inhibits epithelial cell proliferation, blocks NLS-dependent nuclear protein import. J. Biol. Chem. 274, 4890–4899 (1999)

    PubMed  CAS  Google Scholar 

  54. Yu, L., Fernig, D.G., Smith, J.A., Milton, J.D., Rhodes, J.M.: Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin. Cancer Res. 53, 4627–4632 (1993)

    PubMed  CAS  Google Scholar 

  55. Pusztai, A.: Plant Lectins, pp. 78–95. Cambridge University Press, Cambridge, UK (1991)

    Google Scholar 

  56. Evans, R.C., Fear, S., Ashby, D., Hackett. A., Williams, E., Van der Vliet M., Dunstan F.D.J., Rhodes J.M.: Diet and colorectal cancer: an investigation of the lectin/galactose hypothesis. Gastroenterology 122, 1784–1792 (2002)

    PubMed  CAS  Google Scholar 

  57. Liu, F.T., Rabinovich, G.A.: Galectins as modulators of tumour progression. Nat. Rev. Cancer. 5, 29–41 (2005)

    PubMed  CAS  Google Scholar 

  58. Danguy, A., Camby, I., Kiss, R.: Galectins and cancer. Biochim. Biophys. Acta 1572, 285–293 (2002)

    PubMed  CAS  Google Scholar 

  59. Van den Brule, F., Califice, S., Castronovo, V.: Expression of galectins in cancer: a critical review. Glycoconj. J. 19, 537–542 (2004)

    PubMed  Google Scholar 

  60. Califice, S., Castronovo, V., Van Den Brule, F.: Galectin-3 and cancer. Int. J. Oncol. 25, 983–992 (2004)

    PubMed  CAS  Google Scholar 

  61. Takenaka, Y., Fukumori, T., Raz, A.: Galectin-3 and metastasis. Glycoconj. J. 19, 543–549 (2004)

    PubMed  Google Scholar 

  62. Iurisci, I., Tinari, N., Natoli, C., Angelucci, D., Cianchetti, E., Iacobelli, S.: Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin. Cancer Res. 6, 1389–1393 (2000)

    PubMed  CAS  Google Scholar 

  63. Vereecken, P., Zouaoui Boudjeltia, K., Debray, C., Awada, A., Legssyer, I., Sales, F., Petein, M., Vanhaeverbeek, M., Ghanem, G., Heenen, M.: High serum galectin-3 in advanced melanoma: preliminary results. Clin. Exp. Dermatol. 31, 105–109 (2006)

    PubMed  CAS  Google Scholar 

  64. Leffler, H., Barondes, S.H.: Specificity of binding of three soluble rat lung lectins to substituted and unsubstituted mammalian beta-galactosides. J Biol Chem 261, 10119–10126 (1986)

    PubMed  CAS  Google Scholar 

  65. Sparrow, C.P., Leffler, H., Barondes, S.H.: Multiple soluble beta-galactoside-binding lectins from human lung. J. Biol. Chem. 262, 7383–7390 (1987)

    PubMed  CAS  Google Scholar 

  66. Glinsky, V.V., Glinsky, G.V., Huflejt, M.E., Glinskii, O.V., Deutscher, S.L., Quinn, T.P.: The role of Thomsen–Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res. 61, 4851–4857 (2001)

    PubMed  CAS  Google Scholar 

  67. Glinsky, V.V., Huflejt, M.E., Glinsky, G.V., Deutscher, S.L., Quinn, T.P.: Effects of Thomsen–Friedenreich antigen-specific peptide P-30 on beta-galactoside-mediated homotypic aggregation and adhesion to the endothelium of MDA-MB-435 human breast carcinoma cells. Cancer Res. 60, 2584–2588 (2000)

    PubMed  CAS  Google Scholar 

  68. Sangeetha, S.R., Appukuttan, P.S.: IgA1 is the premier serum glycoprotein recognized by human galectin-1 since T antigen (Galbeta1–>3GalNAc-) is far superior to non-repeating N-acetyl lactosamine as ligand. Int. J. Biol. Macromol. 35, 269–276 (2005)

    PubMed  CAS  Google Scholar 

  69. Jeschke, U., Karsten, U., Wiest, I., Schulze, S., Kuhn, C., Friese, K., Walzel, H.: Binding of galectin-1 (gal-1) to the Thomsen–Friedenreich (TF) antigen on trophoblast cells and inhibition of proliferation of trophoblast tumor cells in vitro by gal-1 or an anti-TF antibody. Histochem. Cell Biol. 126, 437–444 (2006)

    PubMed  CAS  Google Scholar 

  70. Yu, L.G., Andrews, N., Zhao, Q., McKean, D., Williams, J.F., Connor, L.J., Gerosimenko, O.V., Hilkens, J., Hirabayashi, J., Kasai, K., Rhodes, J.M.: Galectin-3 interaction with Thomsen–Friedenreich oligosaccharide on cancer-associated MUC1 causes increased cancer cell-endothelial adhesion. J. Biol. Chem. 282, 773–781 (2007)

    PubMed  CAS  Google Scholar 

  71. Perillo, N.L., Marcus, M.E., Baum, L.G.: Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J. Mol. Med. 76, 402–412 (1998)

    PubMed  CAS  Google Scholar 

  72. Inohara, H., Akahani, S., Raz, A.: Galectin-3 stimulates cell proliferation. Exp. Cell Res. 245, 294–302 (1998)

    PubMed  CAS  Google Scholar 

  73. Maeda, N., Kawada, N., Seki, S., Arakawa, T., Ikeda, K., Iwao, H., Okuyama, H., Hirabayashi, J., Kasai, K., Yoshizato, K.: Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways. J. Biol. Chem. 278, 18938–18944 (2003)

    PubMed  CAS  Google Scholar 

  74. Honjo, Y., Nangia-Makker, P., Inohara, H., Raz, A.: Down-regulation of galectin-3 suppresses tumorigenicity of human breast carcinoma cells. Clin. Cancer Res. 7, 661–668 (2001)

    PubMed  CAS  Google Scholar 

  75. Biron, V.A., Iglesias, M.M., Troncoso, M.F., Besio-Moreno, M., Patrignani, Z.J., Pignataro, O.P., Wolfenstein-Todel, C.: Galectin-1 biphasic growth regulation of Leydig tumor cells. Glycobiology 16, 810–821 (2006)

    PubMed  CAS  Google Scholar 

  76. Kopitz, J., von Reitzenstein, C., Andre, S., Kaltner, H., Uhl, J., Ehemann, V., Cantz, M., Gabius, H.J.: Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. J. Biol. Chem. 276, 35917–35923 (2001)

    PubMed  CAS  Google Scholar 

  77. Hammer, D.A.: Leukocyte adhesion: what’s the catch? Curr. Biol. 15, R96–R99 (2005)

    Google Scholar 

  78. Kannagi, R.: Regulatory roles of carbohydrate ligands for selectins in the homing of lymphocytes. Curr. Opin. Struck. Biol. 12, 599–608 (2002)

    CAS  Google Scholar 

  79. Krause, T., Turner, G.A.: Are selectins involved in metastasis? Clin. Exp. Metastasis 17, 183–192 (1999)

    PubMed  CAS  Google Scholar 

  80. Nair, K.S., Naidoo, R., Chetty, R.: Expression of cell adhesion molecules in oesophageal carcinoma and its prognostic value. J. Clin. Pathol. 58, 343–351 (2005)

    PubMed  CAS  Google Scholar 

  81. Kannagi, R., Izawa, M., Koike, T., Miyazaki, K., Kimura, N.: Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 95, 377–384 (2004)

    PubMed  CAS  Google Scholar 

  82. Giavazzi, R., Foppolo, M., Dossi, R., Remuzzi, A.: Rolling and adhesion of human tumor cells on vascular endothelium under physiological flow conditions. J. Clin. Invest. 92, 3038–3044 (1993)

    Article  PubMed  CAS  Google Scholar 

  83. Khaldoyanidi, S.K., Glinsky, V.V., Sikora, L., Glinskii, A.B., Mossine, V.V., Quinn, T.P., Glinsky, G.V., Sriramarao, P.: MDA-MB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen–Friedenreich antigen-galectin-3 interactions. J. Biol. Chem. 278, 4127–4134 (2003)

    PubMed  CAS  Google Scholar 

  84. Thorlacius, H., Prieto, J., Raud, J., Gautam, N., Patarroyo, M., Hedqvist, P., Lindbom, L.: Tumor cell arrest in the microcirculation: lack of evidence for a leukocyte-like rolling adhesive interaction with vascular endothelium in vivo. Clin. Immunol. Immunopathol. 83, 68–76 (1997)

    PubMed  CAS  Google Scholar 

  85. Glinsky, V.V., Glinsky, G.V., Glinskii, O.V., Huxley, V.H., Turk, J.R., Mossine, V.V., Deutscher, S.L., Pienta, K.J., Quinn, T.P.: Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer Res. 63, 3805–3811 (2003)

    PubMed  CAS  Google Scholar 

  86. Zou, J., Glinsky, V.V., Landon, L.A., Matthews, L., Deutscher, S.L.: Peptides specific to the galectin-3 carbohydrate recognition domain inhibit metastasis-associated cancer cell adhesion. Carcinogenesis 26, 309–318 (2005)

    PubMed  CAS  Google Scholar 

  87. Heimburg, J., Yan, J., Morey, S., Glinskii, O.V., Huxley, V.H., Wild, L., Klick, R., Roy, R., Glinsky, V.V., Rittenhouse-Olson K.: Inhibition of spontaneous breast cancer metastasis by anti-Thomsen–Friedenreich antigen monoclonal antibody JAA-F11. Neoplasia 8, 939–948 (2006)

    PubMed  CAS  Google Scholar 

  88. Glinskii, O.V., Huxley, V.H., Glinsky, G.V., Pienta, K.J., Raz, A., Glinsky, V.V.: Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia 7, 522–527 (2005)

    PubMed  CAS  Google Scholar 

  89. Shigeoka, H., Karsten, U., Okuno, K., Yasutomi, M.: Inhibition of liver metastases from neuraminidase-treated colon 26 cells by an anti-Thomsen–Friedenreich-specific monoclonal antibody. Tumour Biol. 20, 139–146 (1999)

    PubMed  CAS  Google Scholar 

  90. Shekhar, M.P., Nangia-Makker, P., Tait, L., Miller, F., Raz, A.: Alterations in galectin-3 expression and distribution correlate with breast cancer progression: functional analysis of galectin-3 in breast epithelial–endothelial interactions. Am. J. Pathol. 165, 1931–1941 (2004)

    PubMed  CAS  Google Scholar 

  91. Singh, R., Campbell, B.J., Yu, L.G., Fernig, D.G., Milton, J.D., Goodlad, R.A., FitzGerald, A.J., Rhodes, JM.: Cell surface-expressed Thomsen–Friedenreich antigen in colon cancer is predominantly carried on high molecular weight splice variants of CD44. Glycobiology 11, 587–592 (2001)

    PubMed  CAS  Google Scholar 

  92. Baldus, S.E., Hanisch, F.G., Kotlarek, G.M., Zirbes, T.K., Thiele, J., Isenber, J., Karsten, U.R., Devine, P.L., Dienes, HP.: Coexpression of MUC1 mucin peptide core and the Thomsen–Friedenreich antigen in colorectal neoplasms. Cancer 82, 1019–1027 (1998)

    PubMed  CAS  Google Scholar 

  93. Jothy, S.: CD44 and its partners in metastasis. Clin. Exp. Metastasis 20, 195–201 (2003)

    PubMed  CAS  Google Scholar 

  94. Heider, K.H., Kuthan, H., Stehle, G., Munzert, G.: CD44v6: a target for antibody-based cancer therapy. Cancer. Immunol. Immunother. 53, 567–579 (2004)

    PubMed  CAS  Google Scholar 

  95. Bresalier, R.S., Niv, Y., Byrd, J.C., Duh, Q.Y., Toribara, N.W., Rockwell, R.W., Dahiya, R., Kim, Y.S.: Mucin production by human colonic carcinoma cells correlates with their metastatic potential in animal models of colon cancer metastasis. J. Clin. Invest. 87, 1037–1045 (1991)

    PubMed  CAS  Google Scholar 

  96. Nakamori, S., Ota, DM., Cleary, K.R., Shirotani, K., Irimura, T.: MUC1 mucin expression as a marker of progression and metastasis of human colorectal carcinoma. Gastroenterology 106, 353–361 (1994)

    PubMed  CAS  Google Scholar 

  97. Karsten, U., Von Mensdorff-Pouilly, S., Goletz, S.: What makes MUC1 a tumor antigen? Tumour Biol. 26, 217–20 (2005)

    PubMed  CAS  Google Scholar 

  98. Ponta, H., Sherman, L., Herrlich, P.A.: CD44: from adhesion molecules to signalling regulators. Nat. Rev., Mol. Cell Biol. 4, 33–45 (2003)

    CAS  Google Scholar 

  99. Zöller, M.: CD44 physiological expression of distinctisoforms as evidence for organ-specific metastatsis formation. J. Mol. Med. 73, 425 (1995)

    PubMed  Google Scholar 

  100. Gunthert, U., Hofmann, M., Rudy, W., Reber, S., Zöller M., Haussmann, I., Matzku, S., Wenzel, A., Ponta, H., Herrlich, P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65, 13–24 (1991)

    Google Scholar 

  101. Reeder, J.A., Gotley, D.C., Walsh, M.D., Fawcett, J., Antalis, T.M.: Expression of antisense CD44 variant 6 inhibits colorectal tumor metastasis and tumor growth in a wound environment. Cancer Res. 58, 3719–3726 (1998)

    PubMed  CAS  Google Scholar 

  102. Taylor-Papadimitriou, J., Burchell, J., Miles, D.W., Dalziel, M.: MUC1 and cancer. Biochim. Biophys. Acta 1455, 301–313 (1999)

    PubMed  CAS  Google Scholar 

  103. Hilkens, J., Ligtenberg, M.J., Vos, H.L., Litvinov, S.V.: Cell membrane-associated mucins and their adhesion-modulating property. Trends. Biochem. Sci. 17, 359–363 (1992)

    PubMed  CAS  Google Scholar 

  104. Lloyd, K.O., Burchell, J., Kudryashov, V., Yin, B.W., Taylor-Papadimitriou, J.: Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells. J. Biol. Chem. 271, 33325–33334 (1996)

    PubMed  CAS  Google Scholar 

  105. Karsten, U., Butschak, G., Cao, Y., Goletz, S., Hanisch, F.G.: A new monoclonal antibody (A78-G/A7) to the Thomsen–Friedenreich pan-tumor antigen. Hybridoma 14, 37–44 (1995)

    Article  PubMed  CAS  Google Scholar 

  106. Hanisch, F.G., Stadie, T., Bosslet, K.: Monoclonal antibody BW835 defines a site-specific Thomsen–Friedenreich disaccharide linked to threonine within the VTSA motif of MUC1 tandem repeats. Cancer Res. 55, 4036–4040 (1995)

    PubMed  CAS  Google Scholar 

  107. Baldus, S.E., Hanisch, F.G., Monaca, E., Karsten, U.R., Zirbes, T.K., Thiele J., Dienes H.P.: Immunoreactivity of Thomsen–Friedenreich (TF) antigen in human neoplasms: the importance of carrier–specific glycotope expression on MUC1. Histol. Histopathol. 14, 1153–1158 (1999)

    PubMed  CAS  Google Scholar 

  108. Bhavanandan, V.P., Umemoto, J., Davidson, E.A.: Characterization of an endo-alpha-N-acetyl galactosaminidase from Diplococcus pneumoniae. Biochem. Biophys. Res. Commun. 70, 738–745 (1976)

    PubMed  CAS  Google Scholar 

  109. Baldus, S.E., Wienand, J.R., Werner, J.P., Landsberg, S., Drebber, U., Hanisch, F.G., Dienes, H.P.: Expression of MUC1, MUC2 and oligosaccharide epitopes in breast cancer: prognostic significance of a sialylated MUC1 epitope. Int. J. Oncol. 27, 1289–1297 (2005)

    PubMed  CAS  Google Scholar 

  110. Becker, J.W., Erickson, H.P., Hoffman, S., Cunningham, B.A., Edelman, G.M.: Topology of cell adhesion molecules. Proc. Natl. Acad. Sci. U. S. A. 86, 1088–1092 (1989)

    PubMed  CAS  Google Scholar 

  111. Ligtenberg, M.J., Buijs, F., Vos, H.L., Hilkens, J.: Suppression of cellular aggregation by high levels of episialin. Cancer Res. 52, 2318–2324 (1992)

    PubMed  CAS  Google Scholar 

  112. Wesseling, J., Van der Valk, S.W., Hilkens, J.: A mechanism for inhibition of E-cadherin-mediated cell–cell adhesion by the membrane-associated mucin episialin/MUC1. Mol. Biol. Cell 7, 565–577 (1996)

    PubMed  CAS  Google Scholar 

  113. Kondo, K., Kohno, N., Yokoyama, A., Hiwada, K.: Decreased MUC1 expression induces E-cadherin-mediated cell adhesion of breast cancer cell lines. Cancer Res. 58, 2014–2019 (1998)

    PubMed  CAS  Google Scholar 

  114. Li, Y.S., Kaneko, M., Sakamoto, D.G., Takeshima, Y., Inai, K.: The reversed apical pattern of MUC1 expression is characteristics of invasive micropapillary carcinoma of the breast. Breast Cancer 13, 58–63 (2006)

    PubMed  CAS  Google Scholar 

  115. Xia, L., Ju, T., Westmuckett, A., An, G., Ivanciu, L., McDaniel, J.M., Lupu, F., Cummings, R.D., McEver, R.P.: Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J. Cell Biol. 164, 451–459 (2004)

    PubMed  CAS  Google Scholar 

  116. Nangia-Makker, P., Hogan, V., Honjo, Y., Baccarini, S., Tait, L., Bresalier, R., Raz, A.: Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J. Natl. Cancer Inst. 94, 1854–1862 (2002)

    PubMed  CAS  Google Scholar 

  117. Nangia-Makker, P, Honjo, Y, Sarvis, R, Akahani, S, Hogan, V, Pienta, KJ, Raz, A.: Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am. J. Pathol. 156, 899–909 (2000)

    PubMed  CAS  Google Scholar 

  118. Thijssen, V.L., Postel, R., Brandwijk, R.J., Dings, R.P., Nesmelova, I., Satijn, S., Verhofstad, N., Nakabeppu, Y., Baum, L.G., Bakkers, J., Mayo, K.H., Poirier, F., Griffioen, A.W.: Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc. Natl. Acad. Sci. U.S.A. 103, 15975–15980 (2006)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The author thanks Professor Jonathan Rhodes for his critical reading of the manuscript. The work in the author’s laboratory is supported by grants from Cancer Research UK (C7595), the Royal Society (R1/2768) and the Mizutani Foundation for Glycosciences (040002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Gang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, LG. The oncofetal Thomsen–Friedenreich carbohydrate antigen in cancer progression. Glycoconj J 24, 411–420 (2007). https://doi.org/10.1007/s10719-007-9034-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-007-9034-3

Keywords

Navigation