Skip to main content
Log in

Generation of a mef2aa:EGFP transgenic zebrafish line that expresses EGFP in muscle cells

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Transgenesis is an important tool for exploring gene expression and function. The myocyte enhancer factor 2a (mef2a) gene encodes a member of the Mef2 protein family that is involved in vertebrate skeletal, cardiac, and smooth muscle development and differentiation during myogenesis. According to studies on human and animal models, mef2a is highly expressed in the heart and somites. To explore the potential of mef2a as a tool for selective labeling of muscle cells in living zebrafish embryos, we constructed a transgene mef2aa:EGFP to induce the expression of green fluorescent protein (GFP) under the control of mef2a promoter. A ~2-kb DNA fragment, upstream of the translational start site of mef2aa, was identified to drive muscle-specific expression of EGFP in zebrafish embryos. Interestingly, the cranial muscles, abductor muscle, and adductor muscle were clearly labeled with EGFP in the established line Tg(mef2aa:EGFP) ntu803. In addition, we showed that mef2aa mRNA was highly present in adult zebrafish heart, but not the skeleton muscle, whereas it was expressed in both embryonic heart and myotome, suggesting that mef2a is vital to the function of adult heart in vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bhagavatula MR et al (2004) Transcription factor MEF2A mutations in patients with coronary artery disease. Hum Mol Genet 13(24):3181–3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black BL, Olson EN (1998) Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14:167–196

    Article  CAS  PubMed  Google Scholar 

  • Burket CT et al (2008) Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters. Transgenic Res 17(2):265–279

    Article  CAS  PubMed  Google Scholar 

  • Estrella NL et al (2015) MEF2 transcription factors regulate distinct gene programs in mammalian skeletal muscle differentiation. J Biol Chem 290(2):1256–1268

    Article  CAS  PubMed  Google Scholar 

  • Gemberling M et al (2013) The zebrafish as a model for complex tissue regeneration. Trends Genet 29(11):611–620

    Article  CAS  PubMed  Google Scholar 

  • Huang Y et al (2013) Nonmuscle myosin II-B (myh10) expression analysis during zebrafish embryonic development. Gene Expr Patterns 13(7):265–270

    Article  CAS  PubMed  Google Scholar 

  • Kimmel CB et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310

    Article  CAS  PubMed  Google Scholar 

  • Kwan KM et al (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236(11):3088–3099

    Article  CAS  PubMed  Google Scholar 

  • Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8(5):353–367

    Article  CAS  PubMed  Google Scholar 

  • Liu N et al (2014) Requirement of MEF2A, C, and D for skeletal muscle regeneration. Proc Natl Acad Sci USA 111(11):4109–4114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin JF et al (1994) A Mef2 gene that generates a muscle-specific isoform via alternative mRNA splicing. Mol Cell Biol 14(3):1647–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinsey TA, Zhang CL, Olson EN (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27(1):40–47

    Article  CAS  PubMed  Google Scholar 

  • Naya FJ et al (2002) Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nat Med 8(11):1303–1309

    Article  CAS  PubMed  Google Scholar 

  • Olson EN, Perry M, Schulz RA (1995) Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors. Dev Biol 172(1):2–14

    Article  CAS  PubMed  Google Scholar 

  • Potthoff MJ, Olson EN (2007) MEF2: a central regulator of diverse developmental programs. Development 134(23):4131–4140

    Article  CAS  PubMed  Google Scholar 

  • Shore P, Sharrocks AD (1995) The MADS-box family of transcription factors. Eur J Biochem 229(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Suzuki E et al (1995) Serum induction of MEF2/RSRF expression in vascular myocytes is mediated at the level of translation. Mol Cell Biol 15(6):3415–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L et al (2003) Mutation of MEF2A in an inherited disorder with features of coronary artery disease. Science 302(5650):1578–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YX et al (2005) Requirements of myocyte-specific enhancer factor 2A in zebrafish cardiac contractility. FEBS Lett 579(21):4843–4850

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2006) Myocyte-specific enhancer factor 2A is essential for zebrafish posterior somite development. Mech Dev 123(10):783–791

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (2015) Egfl6 is involved in zebrafish notochord development. Fish Physiol Biochem 41(4):961–969

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (2016) MicroRNA-10a/10b represses a novel target gene mib1 to regulate angiogenesis. Cardiovasc Res 110(1):140–150

    Article  PubMed  Google Scholar 

  • Yogev O et al (2013) eIF4EBP3L acts as a gatekeeper of TORC1 in activity-dependent muscle growth by specifically regulating Mef2ca translational initiation. PLoS Biol 11(10):e1001679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China 31400918, 31201083, 81570447 and Natural Science Foundation from Jiangsu Province 12KJB180010, BK2012228.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinghong Yan or Dong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Feng Lv and Chenwen Zhu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, F., Zhu, C., Yan, X. et al. Generation of a mef2aa:EGFP transgenic zebrafish line that expresses EGFP in muscle cells. Fish Physiol Biochem 43, 287–294 (2017). https://doi.org/10.1007/s10695-016-0286-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0286-3

Keywords

Navigation