Skip to main content
Log in

Molecular characterization, phylogenetic analysis and expression patterns of five protein arginine methyltransferase genes of channel catfish, Ictalurus punctatus (Rafinesque)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Protein arginine methylation, catalyzed by protein arginine methyltransferases (PRMT), has recently emerged as an important modification in the regulation of gene expression. In this communication, we identified and characterized the channel catfish orthologs to human PRMT 1, 3, 4 and 5, and PRMT4 like. Each PRMT nucleic acid sequence has an open reading frame (ORF) and 3′-untranslated regions. Each ORF appears to encode 361, 587 and 458 amino acid residues for PRMT1, PRMT4 and variant, respectively. The partial ORF of PRMT3 and PRMT5 encode 292 and 563 amino acids, respectively. By comparison with the human counterparts, each channel catfish PRMT also has conserved domains. For expression profile, the channel catfish PRMT1 transcript was detected by RT-PCR in spleens, anterior kidneys, livers, intestines, skin and gills of fish examined. Except in liver, the PRMT3 transcript was detected in all catfish tissues examined. However, the PRMT4 cDNA was detected in livers from all three catfish and gills from two fish, but not other tissues. This information will enable us to further elucidate PRMT functions in channel catfish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Images processing with image. J Biophotonics Int 11:36–42

    Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201

    Article  PubMed  CAS  Google Scholar 

  • Bachand F (2007) Protein arginine methyltransferases: from unicellular eukaryotes to humans. Eukaryot Cell 6:889–898

    Article  PubMed  CAS  Google Scholar 

  • Batut J, Duboé C, Vandel L (2011) The methyltransferases PRMT4/CARM1 and PRMT5 control differentially myogenesis in zebrafish. PLoS ONE 6:e25427

    Article  PubMed  CAS  Google Scholar 

  • Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33:1–13

    Article  PubMed  CAS  Google Scholar 

  • Bedford MT, Richard S (2005) Arginine methylation an emerging regulator of protein function. Mol Cell 18:263–272

    Article  PubMed  CAS  Google Scholar 

  • Bedford MT, Frankel A, Yaffe MB, Clarke S, Leder P, Richard S (2000) Arginine methylation inhibits the binding of proline-rich ligands to Src homology 3, but not WW, domains. J Biol Chem 275:16030–16036

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Boisvert FM, Côté J, Boulanger MC, Cleroux P, Bachand F, Autexier C, Richard S (2002) Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing. J Cell Biol 159:957–969

    Article  PubMed  CAS  Google Scholar 

  • Boulanger MC, Miranda TB, Clarke S, Di Fruscio M, Suter B, Lasko P, Richard S (2004) Characterization of the Drosophila protein arginine methyltransferases DART1 and DART4. Biochem J 379:283–289

    Article  PubMed  CAS  Google Scholar 

  • Branscombe TL, Frankel A, Lee JH, Cook JR, Yang Z, Pestka S, Clarke S (2001) PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J Biol Chem 276:32971–32976

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Cao M, Yang Y, Nagahama Y, Zhao H (2009) Expression pattern of prmt5 in adult fish and embryos of medaka, Oryzias latipes. Fish Physiol Biochem 35:325–332

    Article  PubMed  CAS  Google Scholar 

  • Côté J, Boisvert FM, Boulanger MC, Bedford MT, Richard S (2003) Sam68 RNA binding protein is an in vivo substrate for protein arginine N-methyltransferase 1. Mol Biol Cell 14:274–287

    Article  PubMed  Google Scholar 

  • Dacwag CS, Ohkawa Y, Pal S, Sif S, Imbalzano AN (2007) The protein arginine methyltransferase Prmt5 is required for myogenesis because it facilitates ATP-dependent chromatin remodeling. Mol Cell Biol 27:384–394

    Article  PubMed  CAS  Google Scholar 

  • Dacwag CS, Bedford MT, Sif S, Imbalzano AN (2009) Distinct protein arginine methyltransferases promote ATP-dependent chromatin remodeling function at different stages of skeletal muscle differentiation. Mol Cell Biol 29:1909–1921

    Article  PubMed  CAS  Google Scholar 

  • Dong CW, Zhang YB, Lu AJ, Zhu R, Zhang FT, Zhang QY, Gui JF (2007) Molecular characterisation and inductive expression of a fish protein arginine methyltransferase 1 gene in response to virus infection. Fish Shellfish Immunol 22:380–393

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method wit reduced time and space complexity. BMC Bioinformatics 5:113

    Article  PubMed  Google Scholar 

  • Fabbrizio E, El Messaoudi S, Polanowska J, Paul C, Cook JR, Lee JH, Negre V, Rousset M, Pestka S, Le Cam A, Sardet C (2002) Negative regulation of transcription by the type II arginine methyltransferase PRMT5. EMBO Rep 3:641–645

    Article  PubMed  CAS  Google Scholar 

  • Frankel A, Clarke S (2000) PRMT3 is a distinct member of the protein arginine N-methyltransferase family. Conferral of substrate specificity by a zinc-finger domain. J Biol Chem 275:32974–32982

    Article  PubMed  CAS  Google Scholar 

  • Friesen WJ, Paushkin S, Wyce A, Massenet S, Pesiridis GS, Van Duyne G, Rappsilber J, Mann M, Dreyfuss G (2001) The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol 21:8289–8300

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  PubMed  CAS  Google Scholar 

  • Ghosh SK, Paik WK, Kim S (1988) Purification and molecular identification of two protein methylases I from calf brain. Myelin basic protein- and histone-specific enzyme. J Biol Chem 263:19024–19033

    PubMed  CAS  Google Scholar 

  • Guindon S, Delsuc F, Dufayard JF, Gascuel O (2009) Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 537:113–137

    Article  PubMed  CAS  Google Scholar 

  • Helfman GS (2007) Fish conservation. Island Press, Washington DC, pp 3–16

  • Hung C-M, Li C (2004) Identification and phylogenetic analyses of the protein arginine methyltransferase gene family in fish and ascidians. Gene 340:179–187

    Article  PubMed  CAS  Google Scholar 

  • Krause CD, Yang ZH, Kim YS, Lee JH, Cook JR, Pestka S (2007) Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential. Pharmacol Ther 113:50–87

    Article  PubMed  CAS  Google Scholar 

  • Kuroda N, Uinuk-ool TS, Sato A, Samonte IE, Figueroa F, Mayer WE, Klein J (2003) Identification of chemokines and a chemokine receptor in cichlid fish, shark, and lamprey. Immunogenetics 54(12):884–895

    Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lee DY, Teyssier C, Strahl BD, Stallcup MR (2005) Role of protein methylation in regulation of transcription. Endocr Rev 26:147–170

    Article  PubMed  CAS  Google Scholar 

  • Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37:D229–DS232

    Google Scholar 

  • Lim C, Yildirim-Aksoy M, Shelby R, Li MH, Klesius PH (2009) Growth performance, vitamin E status, and proximate and fatty acid composition of channel catfish, Ictalurus punctatus, fed diets containing various levels of fish oil and vitamin E. Fish Physiol Biochem 36:855–866

    Article  PubMed  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar H, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Google Scholar 

  • McBride AE, Silver PA (2001) State of the arg: protein methylation at arginine comes of age. Cell 106:5–8

    Article  PubMed  CAS  Google Scholar 

  • Mellert HS, McMahon SB (2009) Biochemical pathways that regulate acetyltransferase and deacetylase activity in mammalian cells. Trends Biochem Sci 34:571–578

    Article  PubMed  CAS  Google Scholar 

  • Mowen KA, Tang J, Zhu W, Schurter BT, Shuai K, Herschman HR, David M (2001) Arginine methylation of STAT1 modulates IFNα/β-induced transcription. Cell 104:731–741

    Article  PubMed  CAS  Google Scholar 

  • Mowen KA, Schurter BT, Fathman JW, David M, Glimcher LH (2004) Arginine methylation of NIP45 modulates cytokine gene expression in effector T lymphocytes. Mol Cell 15:559–571

    Article  PubMed  CAS  Google Scholar 

  • Niewmierzycka A, Clarke S (1999) S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase. J Biol Chem 274:814–824

    Article  PubMed  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  • Richard S, Morel M, Cléroux P (2005). Arginine methylation regulates IL-2 gene expression: a role for protein arginine methyltransferase 5 (PRMT5). Biochem J 388:379–386

    Google Scholar 

  • Sack JS, Thieffine S, Bandiera T, Fasolini M, Duke GJ, Jayaraman L, Kish KF, Klei HE, Purandare AV, Rosettani P, Troiani S, Xie D, Bertrand JA (2011) Structural basis for CARM1 inhibition by indole and pyrazole inhibitors. Biochem J 436:331–339

    Article  PubMed  CAS  Google Scholar 

  • Scorilas A, Black MH, Talieri M, Diamandis EP (2000) Genomic organization, physical mapping, and expression analysis of the human protein arginine methyltransferase 1 gene. Biochem Biophys Res Commun 278:349–359

    Article  PubMed  CAS  Google Scholar 

  • Scott HS, Antonarakis SE, Lalioti MD, Rossier C, Silver PA, Henry MF (1998) Identification and characterization of two putative human arginine methyltransferases (HRMT1L1 and HRMT1L2). Genomics 48:330–340

    Article  PubMed  CAS  Google Scholar 

  • Shen EC, Henry MF, Weiss VH, Valentini SR, Silver PA, Lee MS (1998) Arginine methylation facilitates the nuclear export of hnRNP proteins. Genes Dev 12:679–691

    Article  PubMed  CAS  Google Scholar 

  • Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Gary JD, Clarke S, Herschman HR (1998) PRMT 3, a type I protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation. J Biol Chem 273:16935–16945

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Peatman E, Abernathy J, Waldbieser G, Lindquist E, Richardson P, Lucas S, Wang M, Li P, Thimmapuram J, Liu L, Vullaganti D, Kucuktas H, Murdock C, Small BC, Wilson M, Liu H, Jiang Y, Lee Y, Chen F, Lu J, Wang W, Somridhivej B, Baoprasertkul P, Quilang J, Sha Z, Bao B, Wang Y, Wang Q, Takano T, Nandi S, Liu S, Wong L, Kaltenboeck L, Xu P, Quiniou S, Bengten E, Miller N, Trant J, Rokhsar D, Liu Z (2010) Assembly of 500,000 inter-specific catfish expressed sequence tags and large scale gene-associated marker development for whole genome association studies. Genome Biol 11:R8

    Article  PubMed  Google Scholar 

  • Wolf SS (2009) The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci 66:2109–2121

    Article  PubMed  CAS  Google Scholar 

  • Yeh H-Y, Klesius PH (2007a) cDNA cloning, characterization and expression analysis of channel catfish (Ictalurus punctatus, Rafinesque 1818) peroxiredoxin 6 gene. Fish Physiol Biochem 33:233–239

    Article  CAS  Google Scholar 

  • Yeh H-Y, Klesius PH (2007b) Molecular cloning and expression of channel catfish, Ictalurus punctatus, complement membrane attack complex inhibitor CD59. Vet Immunol Immunopathol 120:246–253

    Article  PubMed  CAS  Google Scholar 

  • Yeh H-Y, Klesius PH (2008) Molecular cloning, sequencing and characterization of channel catfish (Ictalurus punctatus, Rafinesque 1818) cathepsin S gene. Vet Immunol Immunopathol 126:382–387

    Article  PubMed  CAS  Google Scholar 

  • Yeh H-Y, Klesius PH (2009a) Channel catfish, Ictalurus punctatus Rafinesque 1818, tetraspanin membrane protein family: characterization and expression analysis of CD81 cDNA. Vet Immunol Immunopathol 128:431–436

    Article  PubMed  CAS  Google Scholar 

  • Yeh H-Y, Klesius PH (2009b) Channel catfish, Ictalurus punctatus cysteine proteinases: cloning, characterization and expression of cathepsin H and L. Fish Shellfish Immunol 26:332–338

    Article  PubMed  CAS  Google Scholar 

  • Yeh H-Y, Klesius PH (2010a) Sequence analysis, characterization and mRNA distribution of channel catfish (Ictalurus punctatus Rafinesque, 1818) chemokine (C-X-C motif) receptor 4 (CXCR4) cDNA. Vet Immunol Immunopathol 134:289–295

    Article  PubMed  CAS  Google Scholar 

  • Yeh H-Y, Klesius PH (2010b) Sequence analysis, characterization and tissue distribution of channel catfish (Ictalurus punctatus Rafinesque, 1818) myeloperoxidase cDNA. Fish Shellfish Immunol 28:504–509

    Article  PubMed  CAS  Google Scholar 

  • Zakrzewicz D, Eickelberg O (2009) From arginine methylation to ADMA: a novel mechanism with therapeutic potential in chronic lung diseases. BMC Pulm Med 9:5

    Article  PubMed  Google Scholar 

  • Zhang X, Cheng X (2003) Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure 11:509–520

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360

    Article  PubMed  CAS  Google Scholar 

  • Zobel-Thropp P, Gary JD, Clarke S (1998) δ-N-methylarginine is a novel posttranslational modification of arginine residues in yeast proteins. J Biol Chem 273:29283–29286

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. Jason White of the USDA ARS Aquatic Animal Health Research Unit, Auburn, AL, for excellent technical support, and Dr. Brian E. Scheffler and his Bioinformatics Group at the USDA ARS Genomics and Bioinformatics Research Unit in Stoneville, MS, for DNA sequencing and bioinformatics. We also thank Dr. Brian B. Oakley of Poultry Microbiological Safety Research Unit, ARS, USDA, Athens, GA, for construction of the phylogenetic tree. This study was supported by the USDA Agricultural Research Service CRIS project no. 6420-32000-024-00D. Mention of trade names or commercial products in this paper is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. The US Department of Agriculture is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung-Yueh Yeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 191 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, HY., Klesius, P.H. Molecular characterization, phylogenetic analysis and expression patterns of five protein arginine methyltransferase genes of channel catfish, Ictalurus punctatus (Rafinesque). Fish Physiol Biochem 38, 1083–1098 (2012). https://doi.org/10.1007/s10695-011-9593-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-011-9593-x

Keywords

Navigation