Skip to main content

Advertisement

Log in

Antagonistic toxicity of arsenate and cadmium in a freshwater amphipod (Gammarus pulex)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Because toxicants rarely occur alone in the environment, a major challenge in risk assessment is to address the combined effects of chemicals on aquatic organisms. This work is aimed at investigating the joint toxicity action of binary mixtures of cadmium and arsenate on Gammarus pulex. Individuals were exposed during 240 h to four single arsenate or cadmium concentrations and binary mixtures of these metals according to a complete factorial plane. Observed mortality in binary mixtures was compared to observed mortality in single arsenate or cadmium exposures. In addition, interactive effects (antagonistic, additive or synergistic) were evaluated using a predictive model for the theoretically expected interactive effect of chemicals. For all the tested concentration combinations, we observed an antagonist ‘between-metals’ interaction on G. pulex mortality. This antagonistic effect was more marked for the lowest than for the highest (i.e. 1502.0 μgAsV L−1 and 28.5 μgCd L−1) tested concentrations of individual metals in binary mixtures. Metal concentrations in body tissues were evaluated and were significantly lower in binary mixtures than in single metal exposures at similar concentration, especially for combinations corresponding to the highest concentrations of both metals (1502.0 μgAsV L−1 and 28.5 μgCd L−1). Results were discussed in terms of (1) mechanisms of uptake and bioconcentration and (2) relationships between metal concentration in gammarid body and observed toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott WS (1925) Method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Adam O, Badot PM, Degiorgi F, Crini G (2009) Mixture toxicity assessment of wood preservative pesticides in the freshwater amphipod Gammarus pulex (L.). Ecotoxicol Environ Saf 72:441–449

    Article  CAS  Google Scholar 

  • Ahsanullah M, Negilski DS, Mobley MC (1981) Toxicity of zinc, cadmium and copper to the shrimp Callianassa australiensis. III. Accumulation of metals. Mar Biol 64:311–316

    CAS  Google Scholar 

  • Alonso A, De Lange HJ (2010) Contrasting sensitivities to toxicants of the freshwater amphipods Gammarus pulex and G. fossarum. Ecotoxicology 19:133–140

    Article  CAS  Google Scholar 

  • Bartlett AJ, Borgmann U, Dixon DG, Batchelor SP, Maguire RJ (2004) Accumulation of tributyltin in Hyalella azteca as an indicator of chronic toxicity: survival, growth, and reproduction. Environ Toxicol Chem 23:2878–2888

    Article  Google Scholar 

  • Bat L, Raffaelli D, Marr IL (1998) The accumulation of copper, zinc and cadmium by the amphipod Corophium volutator (Pallas). J Exp Mar Biol Ecol 223:167–184

    Article  CAS  Google Scholar 

  • Bears H, Richards JG, Schulte PM (2006) Arsenic exposure alters hepatic arsenic species composition and stress-mediated gene expression in the common killifish (Fundulus heteroclitus). Aquat Toxicol 77:257–266

    Article  CAS  Google Scholar 

  • Bervoets L, Voets J, Covaci A, Chu S, Qadah D, Smolders R, Schepens P, Blust R (2005) Use of transplanted zebra mussels (Dreissena polymorpha) to assess the bioavailability of microcontaminants in Flemish surface waters. Environ Sci Technol 39:1492–1505

    Article  CAS  Google Scholar 

  • Bollache L, Gambade G, Cézilly F (2001) The effects of two acanthocephalan parasites, Pomphorhynchus laevis and Polymorphus minutus, on pairing success in male Gammarus pulex (Crustacea: Amphipoda). Behav Ecol Sociobiol 49:293–303

    Google Scholar 

  • Canadian Environmental Protection Act (1994) Priority substances list, assessment report, cadmium and its compounds. CEPA, Ottawa

  • Casini S, Depledge H (1997) Influence of copper, zinc, and iron on cadmium accumulation in the talitrid amphipod, Platorchestia platensis. Bull Environ Contam Toxicol 59:500–506

    Article  CAS  Google Scholar 

  • Chatterjee A, Das D, Mandal BK, Chowdhury TR, Samanta G, Chakraborti D (1995) Arsenic in ground water in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part I: arsenic species in drinking water and urine of the affected people. Analyst 120:643–650

    Article  Google Scholar 

  • Colby S (1967) Calculation synergistic and antagonistic responses of herbicide combination. Weeds 15:20–22

    Article  CAS  Google Scholar 

  • Costa FO, Costa MH (1999) Life history of the amphipod Gammarus locusta in the Sado estuary (Portugal). Acta Oecol 20:305–314

    Article  Google Scholar 

  • Devin S, Piscart C, Beisel JN, Moreteau JC (2003) Ecological traits of the amphipod invader Dikerogammarus villosus on a mesohabitat scale. Arch Hydrobiol 158:43–56

    Article  Google Scholar 

  • Falnoga I, Stibilj V, Tusek-Znidaric M, Slejkovec Z, Majez D, Jacimovic R, Scancar J (2000) Effect of arsenic trioxide on metallothionein and its conversion to different arsenic metabolites in hen liver. Biol Trace Elem Res 78:241–254

    Article  CAS  Google Scholar 

  • Felten V, Charmantier G, Mons R, Geffard A, Rousselle P, Coquery M, Garric J, Geffard O (2008) Physiological and behavioural responses of Gammarus pulex (Crustacea: Amphipoda) exposed to cadmium. Aquat Toxicol 86:413–425

    Article  CAS  Google Scholar 

  • Forrow DM, Maltby L (2000) Toward a mechanistic understanding of contaminant-induced changes in detritus processing in streams: direct and indirect effects on detritivore feeding. Environ Toxicol Chem 19:2100–2106

    Article  CAS  Google Scholar 

  • Ginneken LV, Chowdhury MJ, Blust R (1999) Bioavailability of cadmium and zinc to the common carp, Cyprinus carpio, in complexing environments: a test for the validity of the free ion activity model. Environ Toxicol Chem 18:2295–2304

    Article  Google Scholar 

  • Gowing DP (1960) Comments on tests of herbicide mixtures. Weeds 8:379–391

    Article  Google Scholar 

  • Graca MAS, Maltby L, Calow P (1994) Comparative ecology of Gammarus pulex (L.) and Asellus aquaticus (L.) I. Population-dynamics and microdistribution. Hydrobiologia 281:155–162

    Article  Google Scholar 

  • Hadjispyrou S, Kungolos A, Anagnostopoulos A (2001) Toxicity, bioaccumulation, and interactive effects of organotin, cadmium, and chromium on Artemia franciscana. Ecotoxicol Environ Saf 49:179–186

    Article  CAS  Google Scholar 

  • Holwerda DA (1991) Cadmium kinetics in freshwater clams. V. Cadmium–copper interaction in metal accumulation by Anodonta cygnea and characterization of the metal-binding protein. Arch Environ Contam Toxicol 21:432–437

    Article  CAS  Google Scholar 

  • Isnard P, Flammarion P, Roman G, Babut M, Bastien P, Bintein S, Esserméant L, Férard JF, Gallotti-Schmitt S, Saouter E, Saroli M, Thiébaud H, Tomassone R, Vindimian E (2001) Statistical analysis of regulatory ecotoxicity tests. Chemosphere 45:659–669

    Article  CAS  Google Scholar 

  • Janetzky W (1994) Distribution of the genus Gammarus (Amphipoda: Gammaridae) in the River Hunte and its tributaries (Lower Saxony, northern Germany). Hydrobiologia 294:22–34

    Article  Google Scholar 

  • Kungolos A, Samaras P, Sakellaropoulos GP (1997) Evaluation of the interactive effect of chemicals on aquatic organisms, using a method based on the theory of probabilities. In: Rajar R, Brebbia CA (eds) Proceedings of international conference on water pollution IV. Computational Mechanics Publication, Southampton, pp 107–114

    Google Scholar 

  • Kungolos A, Samaras P, Kipopoulou AM, Zoumboulis A, Sakellaropoulos GP (1999) Interactive toxic effects of agrochemicals on aquatic organisms. Water Sci Technol 40:357–364

    CAS  Google Scholar 

  • Kungolos A, Hadjispyrou S, Petala M, Tsiridis V, Samaras P, Sakellaropoulos GP (2004) Toxic properties of metals and organotin compounds and their interactions on Daphnia magna and Vibrio fischeri. Water Air Soil Pollut 4:101–110

    Article  CAS  Google Scholar 

  • Kungolos A, Emmanouil C, Tsiridis V, Tsiropoulos N (2009) Evaluation of toxic and interactive toxic effects of three agrochemicals and copper using a battery of microbiotests. Sci Total Environ 406:4610–4615

    Article  Google Scholar 

  • McCahon CP, Pascoe D (1988) Use of Gammarus pulex (L.) in safety evaluation tests: culture and selection of a sensitive life stage. Ecotoxicol Environ Saf 15:245–252

    Article  CAS  Google Scholar 

  • McCahon CP, Barton SF, Pascoe D (1990) The toxicity of phenol to the freshwater crustacean Asellus aquaticus (L.) during episodic exposure—relationship between sub-lethal responses and body phenol concentrations. Arch Environ Contam Toxicol 19:926–929

    Article  CAS  Google Scholar 

  • McNeil C, Dick JTA, Elwood RW (1997) The trophic ecology of freshwater Gammarus spp. (Crustacea; Amphipoda): problems and perspectives concerning the functional feeding group concept. Biol Rev 72:349–364

    Article  Google Scholar 

  • Ministère de la santé et de la protection sociale (2003) Ressources en eau-Distribution de l’eau d’alimentation-Qualité des eaux distribuées dans les unités de distribution de plus de 5000 habitants. Rapport de synthèse 1996–1997–1998

  • Morel F (1983) Principles of aquatic chemistry. Wiley Intersciences, New-York

    Google Scholar 

  • Mulliss RM, Revitt DM, Shutes RBE (1996) A statistical approach for the assessment of the toxic influences on Gammarus pulex (Amphipoda) and Asellus aquaticus (Isopoda) exposed to urban aquatic discharges. Water Res 30:1237–1243

    Article  CAS  Google Scholar 

  • National Research Council (1999) Arsenic in drinking water. National Academy Press, Washington

    Google Scholar 

  • Neuparth T, Correia AD, Costa FO, Lima G, Costa MH (2005) Multi-level assessment of chronic toxicity of estuarine sediments with the amphipod Gammarus locusta: I. Biochemical endpoints. Mar Environ Res 60(1):69–91

    Article  CAS  Google Scholar 

  • Part P, Svanberg O, Kiessling A (1985) The availability of cadmium to perfused rainbow trout gills in different water qualities. Water Res 19:427–434

    Article  CAS  Google Scholar 

  • Phillips DJH (1976) The common mussel Mytilus edulis as an indicator of pollution by zinc, cadmium, lead and copper. I. Effects of environmental variables on uptake of metals. Mar Biol 38:59–69

    Article  CAS  Google Scholar 

  • Rainbow PS (1995) Physiology, physicochemistry and metal uptake—a crustacean perspective. Mar Pollut Bull 31:55–59

    Article  CAS  Google Scholar 

  • Rainbow PS (1997) Ecophysiology of trace metal uptake in crustaceans. Estuar Coast Shelf Sci 44:169–175

    Article  CAS  Google Scholar 

  • Rainbow PS, Dallinger R (1983) Metal uptake, regulation and excretion in freshwater invertebrates. In: Dallinger R, Rainbow PS (eds) Ecotoxicology of metals in invertebrates. Lewis Publishers, Boca Raton, pp 119–131

    Google Scholar 

  • Reid SD, McDonald DG (1988) Effects of cadmium, copper and low pH on ion fluxes in rainbow trout, Salmo gairdneri. Can J Fish Aquat Sci 45:244–253

    Article  CAS  Google Scholar 

  • Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35:743–759

    Article  CAS  Google Scholar 

  • Shuhaimi-Othman M, Pascoe D (2007) Bioconcentration and depuration of copper, cadmium, and zinc mixtures by the freshwater amphipod Hyalella azteca. Ecotoxicol Environ Saf 66:29–35

    Article  CAS  Google Scholar 

  • Sornom P, Felten V, Medoc V, Sroda S, Rousselle P, Beisel JN (2010) Effect of gender on physiological and behavioural responses of Gammarus roeseli (Crustacea Amphipoda) to salinity and temperature. Environ Pollut 158:1288–1295

    Article  CAS  Google Scholar 

  • Spehar RL, Anderson RL, Fiandt JT (1978) Toxicity and bioaccumulation of cadmium and lead in aquatic invertebrates. Environ Pollut 15:195–208

    Article  CAS  Google Scholar 

  • Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and humans cells. Arch Toxicol 74:289–299

    Article  CAS  Google Scholar 

  • Tessier A, Buffle J, Campbell PGC (1994) Uptake of trace metals by aquatic organisms. In: Buffle J, De Vitre RR (eds) Chemical and biological regulation of aquatic systems. Lewis Publishers, Boca Raton, pp 197–230

    Google Scholar 

  • Thomas DJ (2007) Molecular processes in cellular arsenic metabolism. Toxicol Appl Pharmacol 222:365–373

    Article  CAS  Google Scholar 

  • Uthus EO (1992) Evidence for arsenic essentiality. Environ Geochem Health 14:55–58

    Article  CAS  Google Scholar 

  • Vellinger C, Parant M, Rousselle P, Immel F, Wagner P, Usseglio-Polatera P (2012) Comparison of arsenate and cadmium toxicity in a freshwater amphipod (Gammarus pulex). Environ Pollut 160:66–73

    Article  CAS  Google Scholar 

  • Verbost PM, Flik G, Lock RA, Wendelaar Bonga SE (1987) Cadmium inhibition of Ca2+ uptake in rainbow trout gills. Am J Physiol 253:216–221

    Google Scholar 

  • Vindimian E, Robaut C, Fillion G (1983) A method for cooperative or noncooperative binding studies using nonlinear regression analysis on a microcomputer. J Appl Biochem 5:261–268

    CAS  Google Scholar 

  • Vindimian E, Garric J, Flammarion P, Thybaud E, Babut M (1999) An index of effluent aquatic toxicity designed by partial least squares regression, using acute and chronic tests and expert judgements. Environ Toxicol Chem 18:2386–2391

    Article  CAS  Google Scholar 

  • Wang W, Rainbow PS (2006) Subcellular partitioning and the prediction of cadmium toxicity to aquatic organisms. Environ Chem 3:395–399

    Article  CAS  Google Scholar 

  • Wicklund-Glynn A, Norrgrenb L, Müssenera A (1994) Differences in uptake of inorganic mercury and cadmium in the gills of the zebrafish, Brachydanio rerio. Aquat Toxicol 30:13–26

    Article  CAS  Google Scholar 

  • Xu Q, Pascoe D (1993) The bioconcentration of zinc by Gammarus pulex (L.) and the application of a kinetic model to determine bioconcentration factors. Water Res 27:1683–1688

    Article  CAS  Google Scholar 

  • Zauke G, Von Lemm R, Meurs H, Butte W (1995) Validation of estuarine Gammarid collectives (Amphipoda: Crustacea) as biomonitors for cadmium in semi-controlled toxicokinetic flow-through experiments. Environ Pollut 90:209–219

    Article  CAS  Google Scholar 

  • Zhang H, Shan B (2008) Historical records of heavy metal accumulation in sediments and the relationship with agricultural intensification in the Yangtze–Huaihe region, China. Sci Total Environ 399:113–120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the French Ministry of Education and Research (Ministère de l’Enseignement Supérieur et de la Recherche), which has supported this study. The authors warmly thank Karen Hopson for linguistic revision of the manuscript and the two anonymous reviewers for valuable comments that improved the clarity of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Vellinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vellinger, C., Parant, M., Rousselle, P. et al. Antagonistic toxicity of arsenate and cadmium in a freshwater amphipod (Gammarus pulex). Ecotoxicology 21, 1817–1827 (2012). https://doi.org/10.1007/s10646-012-0916-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-012-0916-1

Keywords

Navigation