Skip to main content
Log in

Analysis of Methylglyoxal Metabolism in CHO Cells Grown in Culture

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Recent evidence suggests that several unknown or ill-characterized factors strongly influence cell growth and function in culture. Isolating these factors is necessary in order to maximize culture productivities. Methylglyoxal (MG), a potent protein and nucleic acid modifying agent, has been identified as a player in the signaling pathways associated with cell death and is known to be detrimental to cultured cells. This compound is produced in all mammalian systems by spontaneous phosphate elimination from glycolytic pathway intermediates. A kinetic model that qualitatively describes the cellular distribution of protein-associated MG in the absence of enzymatic adduct formation predicted far lower levels of reversibly bound MG than measured in cultured CHO cells. This suggests that the targeted modification of proteins through enzymatically mediated mechanisms is a significant sink for cellular methylglyoxal. The model was validated with measurements of carbon flux through the glyoxalase pathway to d-lactic acid, a unique end product of MG metabolism in mammalian systems. Fluxes to d-lactic acid of up to 16.8 mmol  ml-packed cells−1 day−1 were measured with CHO cells grown in batch culture or 100-fold more than found in normal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.U. Ahmed E. Brinkmann Frye T.P. Degenhardt S.R. Thorpe J.W. Baynes (1997) ArticleTitleN-ε-(carboxyethyl)lysinea product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins Biochem. J. 324 565–70 Occurrence Handle1:CAS:528:DyaK2sXjvFGmtLc%3D Occurrence Handle9182719

    CAS  PubMed  Google Scholar 

  • G. Alberts D. Bray J. Lewis M. Raff K. Roberts J.D. Watson (1994) Molecular Biology of the Cell EditionNumber3 Garland Publishing Inc. New York

    Google Scholar 

  • D.C. Anderson C.F. Goochee (1995) ArticleTitleThe effect of ammonia on O-linked glycosylation of granulocyte colony-stimulating factor produced by Chinese hamster ovary cells Biotechnol. Bioeng. 47 96–105 Occurrence Handle10.1002/bit.260470112

    Article  Google Scholar 

  • T.A. Bibila D.K. Robinson (1995) ArticleTitleIn pursuit of the optimal fed-batch process for monoclonal antibody production Biotechnol. Prog. 11 1–13 Occurrence Handle10.1021/bp00031a001 Occurrence Handle1:CAS:528:DyaK2MXjsVSls7g%3D Occurrence Handle7765983

    Article  CAS  PubMed  Google Scholar 

  • M. Bourajjaj C.D.A. Stehouwer V.W.M. Hinsbergh Particlevan C.G. Schalkwijk (2003) ArticleTitleRole of methylglyoxal adducts in the development of vascular complications in diabetes mellitus Biochem. Soc. Trans. 31 IssueID6 1400–1402 Occurrence Handle1:CAS:528:DC%2BD3sXps12jt7g%3D Occurrence Handle14641073 Occurrence Handle10.1042/BST0311400

    Article  CAS  PubMed  Google Scholar 

  • F.W.R. Chaplen D.C. Cameron W.E. Fahl (1996a) ArticleTitleEffect of endogenous methylglyoxal on Chinese hamster ovary cells grown in culture Cytotechnology 22 33–42 Occurrence Handle10.1007/BF00353922 Occurrence Handle1:CAS:528:DyaK1cXislemu7k%3D

    Article  CAS  Google Scholar 

  • F.W.R. Chaplen W.E. Fahl D.C. Cameron (1996b) ArticleTitleMethod for determination of free extracellular and intracellular methylglyoxal in animal cells grown in culture Anal. Biochem. 238 171–178 Occurrence Handle10.1006/abio.1996.0271 Occurrence Handle1:CAS:528:DyaK28XktlSgtbw%3D

    Article  CAS  Google Scholar 

  • F.W.R. Chaplen W.E. Fahl D.C. Cameron (1998) ArticleTitleEvidence of high levels of methylglyoxal in Chinese hamster ovary cells grown in culture Proc. Natl. Acad. Sci. USA 95 5533–5538 Occurrence Handle10.1073/pnas.95.10.5533 Occurrence Handle1:CAS:528:DyaK1cXjtFWktL0%3D Occurrence Handle9576917

    Article  CAS  PubMed  Google Scholar 

  • D.J. Creighton M. Migliorine T. Pourmotabbed M.K. Guha (1988) ArticleTitleOptimization of the efficiency of the glyoxalase pathway Biochemistry 27 IssueID19 7376–84 Occurrence Handle10.1021/bi00419a031 Occurrence Handle1:CAS:528:DyaL1cXlt1Cmsrc%3D Occurrence Handle3207683

    Article  CAS  PubMed  Google Scholar 

  • J. Du H. Suzuki F. Nagase A.A. Akhand T. Yokoyama T. Miyata K. Kurokawa I. Nakashima (2000) ArticleTitleMethylglyoxal induces apoptosis in Jurkat leukemia cells by activating c-Jun N-terminal kinase J. Cell. Biochem. 77 IssueID2 333–44 Occurrence Handle10.1002/(SICI)1097-4644(20000501)77:2<333::AID-JCB15>3.0.CO;2-Q Occurrence Handle1:CAS:528:DC%2BD3cXit1Gkur8%3D Occurrence Handle10723098

    Article  CAS  PubMed  Google Scholar 

  • J.P. Godbout J. Pesavento M.E. Hartman S.R. Manson G.G. Freund (2001) ArticleTitleMethyglyoxal enhances cisplatin-induced cytotoxicity by activating PKC-δ J. Biol. Chem. 277 IssueID4 2554–2561 Occurrence Handle11707430 Occurrence Handle10.1074/jbc.M100385200 Occurrence Handle1:CAS:528:DC%2BD38XhtVSgs7o%3D

    Article  PubMed  CAS  Google Scholar 

  • P.C. Jocelyn (1977) Biochemistry of the SH Group Academic Press New York

    Google Scholar 

  • T.W.C. Lo M.E. Westwood A.C. McLellan T. Selwood P.J. Thornalley (1994) ArticleTitleBinding and modification of proteins by methylglyoxal under physiological conditions J. Biol. Chem. 269 32299–32305 Occurrence Handle1:CAS:528:DyaK2cXmvFGnur0%3D Occurrence Handle7798230

    CAS  PubMed  Google Scholar 

  • Z. Makita H. Vlassara A. Cerami R. Bucala (1992) ArticleTitleImmunochemical detection of advanced glycosylation end products in vivo J. Biol. Chem. 267 IssueID8 5133–5138 Occurrence Handle1:CAS:528:DyaK38Xhs12msrY%3D Occurrence Handle1371995

    CAS  PubMed  Google Scholar 

  • A.M. Martins P. Mendes C. Cordeiro A.P. Freire (2001) ArticleTitleIn situ kinetic analysis of glyoxalase I and glyoxalase II in Saccharomyces cerevisiae Eur. J. Biochem. 268 IssueID14 3930–3936 Occurrence Handle10.1046/j.1432-1327.2001.02304.x Occurrence Handle1:CAS:528:DC%2BD3MXlsVejsr8%3D Occurrence Handle11453985

    Article  CAS  PubMed  Google Scholar 

  • A.C. McLellan S.A. Phillips P.J. Thornalley (1992) ArticleTitleFluorimetric assay of D-lactate Anal. Biochem. 206 IssueID1 12–6 Occurrence Handle1:CAS:528:DyaK38XlvVOnu7g%3D Occurrence Handle1456422 Occurrence Handle10.1016/S0003-2697(05)80004-1

    Article  CAS  PubMed  Google Scholar 

  • W.M. Miller H.W. Blanch (1991) Regulation of animal cell metabolism in bioreactors C.S Ho D.I.C. Wang (Eds) Animal Cell Bioreactors, Ch. 6 Butterworth-Heinemann Boston 119–157

    Google Scholar 

  • A. Papsoulis Y. Al-Abed R. Bucala (1995) ArticleTitleIdentification of N2-(1-carboxyethyl)guanine (CEG) as a guanine advanced glycosylation end-product Biochemistry 34 648–655 Occurrence Handle10.1021/bi00002a032

    Article  Google Scholar 

  • J.P. Richard (1991) ArticleTitleKinetic parameters for the elimination reaction catalyzed by triosephosphate isomerase and an estimation of the reaction’s physiological significance Biochemistry 30 4581–4585 Occurrence Handle10.1021/bi00232a031 Occurrence Handle1:CAS:528:DyaK3MXitVagtb0%3D Occurrence Handle2021650

    Article  CAS  PubMed  Google Scholar 

  • H. Sakamoto T. Mashima A. Kizaki S. Dan Y. Hashimote M. Naito T. Tsuruo (2000) ArticleTitleGlyoxalase I is involved in the resistance of human leukemia cells to antitumor agent-induced apoptosis Blood 95 IssueID10 3214–3218 Occurrence Handle1:CAS:528:DC%2BD3cXjt1Cjs7w%3D Occurrence Handle10807791

    CAS  PubMed  Google Scholar 

  • F.A. Shamsi A. Partal C. Sady M.A. Glomb R.H. Nagaraj (1998) ArticleTitleImmunological evidence for methylglyoxal-derived modifications in vivo. Determination of antigenic epitopes J. Biol. Chem. 273 IssueID12 6928–6936 Occurrence Handle10.1074/jbc.273.12.6928 Occurrence Handle1:CAS:528:DyaK1cXitVGit7Y%3D Occurrence Handle9506998

    Article  CAS  PubMed  Google Scholar 

  • M. Shinohara P.J. Thornalley I. Giadino et al. (1998) ArticleTitleOverexpression of glyoxalase I in bovine endothelial cells inhibits intracellular advanced glycation end-product formation and prevents hyperglycemia-induced increases in macromolecular endocytosis J. Clin. Invest. 101 IssueID5 1142–1147 Occurrence Handle1:CAS:528:DyaK1cXhs1yqsb0%3D Occurrence Handle9486985 Occurrence Handle10.1172/JCI119885

    Article  CAS  PubMed  Google Scholar 

  • K. Takahashi (1968) ArticleTitleThe reaction of phenylglyoxal with arginine residues in proteins J. Biochem. (Tokyo) 23 6171–6179

    Google Scholar 

  • P.J. Thornalley (1988) ArticleTitleModification of the glyoxalase system in human red blood cells by glucose in vitro Biochem. J. 254 751–755 Occurrence Handle1:CAS:528:DyaL1cXlvVOrsrw%3D Occurrence Handle3196289

    CAS  PubMed  Google Scholar 

  • P.J. Thornalley (1990) ArticleTitleThe glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life Biochem. J. 269 1–11 Occurrence Handle1:CAS:528:DyaK3cXkslens74%3D Occurrence Handle2198020

    CAS  PubMed  Google Scholar 

  • P.J. Thornalley (1996) ArticleTitlePharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification – a role in pathogenesis and antiproliferative chemotherapy Gen. Pharmacol. 27 IssueID4 565–573 Occurrence Handle1:CAS:528:DyaK28Xkt1ClsLo%3D Occurrence Handle8853285

    CAS  PubMed  Google Scholar 

  • P.J. Thornalley L.G. Edwards Y. Kang C. Wyatt N. Davies M.J. Ladan J. Double (1996) ArticleTitleAntitumor activity of S-p-bromobenzylglutathione cyclopentyl diester in vitro in vivo. Inhibition of glyoxalase I and the induction of apoptosis Biochem. Pharmacol. 51 IssueID10 1365–1372 Occurrence Handle10.1016/0006-2952(96)00059-7 Occurrence Handle1:CAS:528:DyaK28XislCgtb8%3D Occurrence Handle8787553

    Article  CAS  PubMed  Google Scholar 

  • C.E. Vaca J-L. Fang M. Conradi S-M. Hou (1994) ArticleTitleDevelopment of a 32P-postlabelling method for the analysis of 2’-deoxyguanosine-3’-monophosphate and DNA adducts of methylglyoxal Carcinogenesis 15 1887–1894 Occurrence Handle1:CAS:528:DyaK2cXmvFCrsr4%3D Occurrence Handle7923582 Occurrence Handle10.1093/carcin/15.9.1887

    Article  CAS  PubMed  Google Scholar 

  • D.L. Vander Jagt R.K. Hassebrook L.A. Hunsaker W.M. Brown R.E. Royer (2001) ArticleTitleMetabolism of the 2-oxoaldehyde methylglyoxal by aldose reductase and by glyoxalase-I: roles for glutathione in both enzymes and implications for diabetic complications Chem. Biol. Interact. 130–132 IssueID13 549–562 Occurrence Handle11306074 Occurrence Handle10.1016/S0009-2797(00)00298-2

    Article  PubMed  Google Scholar 

  • D.L. Vander Jagt L.P. Han C.H. Lehman (1972) ArticleTitleKinetic evaluation of substrate specificity in the glyoxalase I disproportionation of α-ketoaldehydes Biochemistry 11 IssueID20 3735–3740 Occurrence Handle10.1021/bi00770a011 Occurrence Handle1:CAS:528:DyaE38XltlKrs7g%3D Occurrence Handle5072200

    Article  CAS  PubMed  Google Scholar 

  • F. Herreweghe ParticleVan J. Mao F.W.R. Chaplen J. Grooten K. Gevaert J. Vandekerckhove K. Vancompernolle (2002) ArticleTitleTumor Necrosis Factor-induced modulation of glyoxalase I activities through phosphorylation by PKA results in cell death and is accompanied by the formation of specific methylglyoxal-derived AGEs Proc. Natl. Acad. Sci. USA 99 IssueID2 949–954 Occurrence Handle11792832 Occurrence Handle10.1073/pnas.012432399 Occurrence Handle1:CAS:528:DC%2BD38Xht1Wisbs%3D

    Article  PubMed  CAS  Google Scholar 

  • K. Uchida O.T. Khor O. Oya T. Osawa Y. Yasuda T. Miyata (1997) ArticleTitleProtein modification by Maillard reaction intermediate methylglyoxal. Immunochemical detection of fluorescent 5-methylimidazolone derivatives in vivo FEBS Lett. 410 IssueID2–3 313–318 Occurrence Handle1:CAS:528:DyaK2sXktlCqs7s%3D Occurrence Handle9237653 Occurrence Handle10.1016/S0014-5793(97)00610-8

    Article  CAS  PubMed  Google Scholar 

  • M.E. Westwood A.C. McLellan P.J. Thornalley (1994) ArticleTitleReceptor-mediated endocytic uptake of methylglyoxal-modified serum albumin J. Biol. Chem. 269 32293–32298 Occurrence Handle1:CAS:528:DyaK2cXmvFOlt7o%3D Occurrence Handle7798229

    CAS  PubMed  Google Scholar 

  • M.E. Westwood P.J. Thornalley (1996) ArticleTitleInduction of synthesis and secretion of interleukin 1β in the human monocyteic THP-1 cells by human serum albumins modified by methylglyoxal and advanced glycation endproducts Immunol. Lett. 50 17–21 Occurrence Handle10.1016/0165-2478(96)02496-0 Occurrence Handle1:CAS:528:DyaK28Xkt1SrtLY%3D Occurrence Handle8793554

    Article  CAS  PubMed  Google Scholar 

  • L. Xie D.I. Wang (1994) ArticleTitleApplications of an improved stoichiometric model in medium design and fed-batch cultivation of animal cells in a bioreactor Cytotechnology 15 IssueID1–3 17–29 Occurrence Handle1:STN:280:DyaK2M3gtVOgtw%3D%3D Occurrence Handle7765929 Occurrence Handle10.1007/BF00762376

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank W. R. Chaplen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kingkeohoi, S., Chaplen, F.W.R. Analysis of Methylglyoxal Metabolism in CHO Cells Grown in Culture. Cytotechnology 48, 1–13 (2005). https://doi.org/10.1007/s10616-005-1920-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-005-1920-6

Keywords

Navigation