Skip to main content

Advertisement

Log in

Extensive conservation of genomic imbalances in canine transmissible venereal tumors (CTVT) detected by microarray-based CGH analysis

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Canine transmissible venereal tumor (CTVT) is an intriguing cancer that is transmitted naturally as an allograft by transplantation of viable tumor cells from affected to susceptible dogs. At least initially, the tumor is able to evade the host's immune response; thus, CTVT has potential to provide novel insights into tumor immunobiology. The nature of CTVT as a “contagious” cancer, originating from a common ancestral source of infection, has been demonstrated previously by a series of studies comparing geographically distinct tumors at the molecular level. While these studies have revealed that apparently unrelated tumors share a striking degree of karyotypic conservation, technological restraints have limited the ability to investigate the chromosome composition of CTVTs in any detail. We present characterization of a strategically selected panel of CTVT cases using microarray-based comparative genomic hybridization analysis at ~one-megabase resolution. These data show for the first time that the tumor presents with an extensive range of non-random chromosome copy number aberrations that are distributed widely throughout the dog genome. The majority of abnormalities detected were imbalances of small subchromosomal regions, often involving centromeric and telomeric sequences. All cases also showed the sex chromosome complement XO. There was remarkable conservation in the cytogenetic profiles of the tumors analyzed, with only minor variation observed between different cases. These data suggest that the CTVT genome demonstrates a vast degree of both structural and numerical reorganization that is maintained during transmission among the domestic dog population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

aCGH:

array-based comparative genomic hybridization

BAC:

bacterial artificial chromosome

CFA:

Canis familiaris

CGH:

comparative genomic hybridization

CHORI:

Children's Hospital Oakland Research Institute

CNA:

copy number aberration

CTVT:

canine transmissible venereal tumor

DAPI:

4′,6-diamidino-2-phenylindole

DFTD:

devil facial tumor disease

FISH:

fluorescence in situ hybridization

LINE-1:

long interspersed nuclear element

Mb:

megabase

RPCI:

Roswell Park Cancer Institute

References

  • Adams EW, Sapp WJ, Carter LP (1981) Cytogenetic observations on the canine venereal tumor in long-term culture. Cornell Vet 71:336–346

    CAS  PubMed  Google Scholar 

  • Das U, Das AK (2000) Review of canine transmissible venereal sarcoma. Vet Res Commun 24:545–556

    Article  CAS  PubMed  Google Scholar 

  • Flordal Thelander E, Ichimura K, Collins V et al (2007) Detailed assessment of copy number alterations revealing homozygous deletions in 1p and 13q in mantle cell lymphoma. Leukemia Res 31:1219–1230

    Article  CAS  Google Scholar 

  • Fujinaga T, Yamashita M, Yoshida MC et al (1989) Chromosome analysis of canine transmissible sarcoma cells. Zentralbl Veterinarmed A 36:481–489

    CAS  PubMed  Google Scholar 

  • Gagos S, Irminger-Finger I (2005) Chromosome instability in neoplasia: chaotic roots to continuous growth. Int J Biochem Cell Biol 37:1014–1033

    Article  CAS  PubMed  Google Scholar 

  • Harmelin A, Pinthus JH, Katzir N et al (2001) Use of a murine xenograft model for canine transmissible venereal tumor. Am J Vet Res 62:907–911

    Article  CAS  PubMed  Google Scholar 

  • Idowu L (1977) The chromosomes of the transmissible venereal tumour of dogs in Ibadan, Nigeria. Res Vet Sci 22:271–273

    CAS  PubMed  Google Scholar 

  • Jong K, Marchiori E, Meijer G, Vaart AV, Ylstra B (2004) Breakpoint identification and smoothing of array comparative genomic hybridization data. Bioinformatics 20:3636–3637

    Article  CAS  PubMed  Google Scholar 

  • Katzir N, Rechavi G, Cohen JB et al (1985) “Retroposon” insertion into the cellular oncogene c-myc in canine transmissible venereal tumor. Proc Natl Acad Sci U S A 82:1054–1058

    Article  CAS  PubMed  Google Scholar 

  • Katzir N, Arman E, Cohen D, Givol D, Rechavi G (1987) Common origin of transmissible venereal tumors (TVT) in dogs. Oncogene 1:445–448

    CAS  PubMed  Google Scholar 

  • Li R, Mignot E, Faraco J et al (1999) Construction and characterization of an eightfold redundant dog genomic bacterial artificial chromosome library. Genomics 58:9–17

    Article  CAS  PubMed  Google Scholar 

  • Liao KW, Lin ZY, Pao HN et al (2003) Identification of canine transmissible venereal tumor cells using in situ polymerase chain reaction and the stable sequence of the long interspersed nuclear element. J Vet Diagn Invest 15:399–406

    PubMed  Google Scholar 

  • Lindblad-Toh K, Wade CM, Mikkelsen TS et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819

    Article  CAS  PubMed  Google Scholar 

  • Makino S (1963) Some epidemiologic aspects of venereal tumors of dogs as revealed by chromosome and DNA studies. Ann N Y Acad Sci 108:1106–1122

    Article  CAS  PubMed  Google Scholar 

  • Mukaratirwa S, Gruys E (2003) Canine transmissible venereal tumour: cytogenetic origin, immunophenotype, and immunobiology. A review. Vet Q 25:101–111

    CAS  PubMed  Google Scholar 

  • Murgia C, Pritchard JK, Kim SY, Fassati A, Weiss RA (2006) Clonal origin and evolution of a transmissible cancer. Cell 126:477–487

    Article  CAS  PubMed  Google Scholar 

  • Murray M, James ZH, Martin WB (1969) A study of the cytology and karyotype of the canine transmissible venereal tumour. Res Vet Sci 10:565–568

    CAS  PubMed  Google Scholar 

  • Oshimura M, Sasaki M, Makino S (1973) Chromosomal banding patterns in primary and transplanted venereal tumors of the dog. J Natl Cancer Inst 51:1197–1203

    CAS  PubMed  Google Scholar 

  • Pearse AM, Swift K (2006) Allograft theory: transmission of devil facial-tumour disease. Nature 439:549

    Article  CAS  PubMed  Google Scholar 

  • Rebbeck CA, Thomas R, Breen M, Leroi AM, Burt A (2009) Origins and evolution of a transmissible cancer. Evolution 63(9):2340–2349

    Article  CAS  PubMed  Google Scholar 

  • Richardson VB, Sapp WJ, Adams EW (1987) The distribution of C-bands in canine transmissible venereal tumor cells. Cornell Vet 77:161–167

    CAS  PubMed  Google Scholar 

  • Thomas R, Duke SE, Karlsson EK et al (2008) A genome assembly-integrated dog 1 Mb BAC microarray: a cytogenetic resource for canine cancer studies and comparative genomic analysis. Cytogenet Genome Res 122:110–121

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Scott A, Langford CF et al (2005) Construction of a 2-Mb resolution BAC microarray for CGH analysis of canine tumors. Genome Res 15:1831–1837

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Duke SE, Wang HJ et al (2009a) 'Putting our heads together': insights into genomic conservation between human and canine intracranial tumors. J Neurooncol 94:333–349

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Wang HJ, Tsai PC et al (2009b) Influence of genetic background on tumor karyotypes: Evidence for breed-associated cytogenetic aberrations in canine appendicular osteosarcoma. Chromosome Res 17:365–377

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Mota N, Simon-Martinez J, Cordova-Alarcon E, Lagunes L, Fajardo R (2008) The T963C mutation of TP53 gene does not participate in the clonal origin of canine TVT. Vet Res Commun 32:187–191

    Article  CAS  PubMed  Google Scholar 

  • Vermooten MI (1987) Canine transmissible venereal tumor (TVT): a review. J S Afr Vet Assoc 58:147–150

    CAS  PubMed  Google Scholar 

  • Weber WT, Nowell PC, Hare WC (1965) Chromosome studies of a transplanted and a primary canine venereal sarcoma. J Natl Cancer Inst 35:537–547

    CAS  PubMed  Google Scholar 

  • Young AC, Kirkness EF, Breen M (2008) Tackling the characterization of canine chromosomal breakpoints with an integrated in-situ/in-silico approach: the canine PAR and PAB. Chromosome Res 16:1193–1202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the following for contributing the CTVT specimens used in this study: Ayoub Banderker, Antonio Ortrga-Pacheco, Jean Gilchrist, and Belinda Rivera. Canine cancer genetics work at NCSU is supported by funding from the American Kennel Club Canine Health Foundation and the Morris Animal Foundation. This work was also supported by the National Environmental Research Council (NERC) and the Breakthrough Breast Cancer Research Centre, part of the Institute of Cancer Research (ICR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Breen.

Additional information

Responsible Editor: Herbert Macgregor

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Table1

Thomas et al cTVT aCGH SOM (XLS 409 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, R., Rebbeck, C., Leroi, A.M. et al. Extensive conservation of genomic imbalances in canine transmissible venereal tumors (CTVT) detected by microarray-based CGH analysis. Chromosome Res 17, 927–934 (2009). https://doi.org/10.1007/s10577-009-9080-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-009-9080-8

Keywords

Navigation