Skip to main content
Log in

Sporadic aneuploidy in PHA-stimulated lymphocytes of Turner’s syndrome patients

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

In line with the view that aneuploidy destabilizes the karyotype, initiating an autocatalytic process that gives rise to further loss and/or gain of chromosomes, we examined whether a constitutional aneuploidy such as monosomy for one chromosome is associated with sporadic loss and/or gain of other chromosomes. We used PHA-stimulated lymphocytes from eight women with Turner's syndrome (six displayed X chromosome monosomy ranging from 60.2% to 97.9%, and two were below 10%), and eight healthy women who served as a control group. Fluorescence in-situ hybridization (FISH), applied at interphase, was used to evaluate the level of aneuploidy for three randomly selected chromosomes (autosomes 8, 15 and 18) in each sample. For each tested chromosome, our results showed a significantly higher level of aneuploid cells in the samples from patients than in those from controls (p < 0.01). The mean level of aneuploid cells for all three tested autosomes was almost twice as high in the patient samples as in the control samples (p < 0.002). It is noteworthy that, in the Turner's syndrome patients, X chromosome disomic cells also displayed increased levels of aneuploidy. It is possible that monosomy of X chromosome in female cells destabilizes their own genome and also affects X disomic cells in the region. One may also speculate that a common factor(s) is involved with both constitutional and sporadic aneuploidy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiel A, Avivi L, Gaber E, Fejgin MD (1998) Asynchronous replication of allelic loci in Down syndrome. Eur J Hum Genet 6: 359–364.

    Article  PubMed  CAS  Google Scholar 

  • Amiel A, Korenstein A, Gaber E, Avivi L (1999) Asynchronous replication of alleles in genomes carrying an extra autosome. Eur J Hum Genet 7: 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Antonarakis SE, Lyle R, Dermitzakis ET, Rymond A, Deutsch S (2004) Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nat Rev Genet 5: 725–738.

    Article  PubMed  CAS  Google Scholar 

  • Bean CJ, Hunt PA, Millie EA, Hassold TJ (2001) Analysis of malsegregating mouse Y chromosome: evidence that the earliest cleavage divisions of the mammalian embryo are non-disjunction prone. Hum Mol Genet 10: 963–972.

    Article  PubMed  CAS  Google Scholar 

  • Blatt J, Olshan AF, Lee PA, Ross JL (1997) Neuroblastoma and related tumors in Turner’s syndrome. J Pediatr 131: 666–670.

    Article  PubMed  CAS  Google Scholar 

  • Carrel L, Willard HF (2005) X-Inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434: 400–404.

    Article  PubMed  CAS  Google Scholar 

  • Carrel L, Cottle AA, Goglin KC Willard HF (1999) A first-generation X-inactivation profile of the human X chromosome. Proc Natl Acad Sci USA 96: 14440–14444.

    Article  PubMed  CAS  Google Scholar 

  • DeBrasi D, Genardi M, D’Agostino A et al. (1995) Double autosomal/gonosomal mosaic aneuploidy: study of nondisjunction in two cases with trisomy 8. Hum Genet 95: 519–525.

    Article  PubMed  CAS  Google Scholar 

  • Dobie KW, Hari KL, Maggert KA, Karpen GH (1999) Centromere proteins and chromosome inheritance: a complex affair. Curr Opin Genet Dev 9: 206–217.

    Article  PubMed  CAS  Google Scholar 

  • Duesberg P, Li R (2003) Multistep carcinogenesis – a chain reaction of aneuploidization. Cell Cycle 2: 202–210.

    PubMed  CAS  Google Scholar 

  • Duesberg P, Rasnick D (2000) Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil Cytoskelet 47: 81–107.

    Article  CAS  Google Scholar 

  • Eastmond DA, Pinkel D (1990) Detection of aneuploidy and aneuploidy-inducing agents in human lymphocytes using fluorescence in situ hybridization with chromosome-specific probes. Mutat Res 234: 303–318.

    PubMed  CAS  Google Scholar 

  • Gravholt CH, Juul S, Naeraa RW, Hansen J (1998) Morbidity in Turner syndrome. J Clin Epidemiol 51: 147–158.

    Article  PubMed  CAS  Google Scholar 

  • Harada N, Abe K, Nishimura T et al. (1998) Origin and mechanism of formation of 45,X/47,XX,+21 mosaicism in a fetus. Am J Med Genet 75: 432–437.

    Article  PubMed  CAS  Google Scholar 

  • Hasle H, Olsen JH, Nielsen J, Hansen J, Friedrich U, Tommerup N (1996) Occurrence of cancer in women with Turner syndrome. Br J Cancer 73: 1156–1159.

    PubMed  CAS  Google Scholar 

  • Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2: 280–291.

    Article  PubMed  CAS  Google Scholar 

  • Hassold TJ, Pettay D, Robinson A, Uchida I (1992) Molecular studies of prenatal origin and mosaicism in 45,X-conceptuses. Hum Genet 89: 647–652.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs PA (1990) The role of chromosome abnormalities in reproductive failure. Reprod Nutr Dev Suppl 1: 63S–74S.

    Google Scholar 

  • Jacobs PA, Hassold TJ (1995) The origin of numerical chromosome abnormalities. Adv Genet 33: 101–133.

    Article  PubMed  CAS  Google Scholar 

  • Lorda-Sanchez I, Binkert F, Maechler M, Schinzel A (1992) Molecular study of 45,X conceptuses: correlation with clinical findings. Am J Med Genet 42: 487–490.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee AB, Thomas S (1997) A longitudinal study of human age-related chromosomal analysis in skin fibroblasts. Exp Cell Res 235: 161–169.

    Article  PubMed  CAS  Google Scholar 

  • Pidoux AL, Allshire RC (2000) Centromeres: getting a grip of chromosome. Curr Opin Cell Biol 12: 308–319.

    Article  PubMed  CAS  Google Scholar 

  • Rasnick D (2002) Aneuoloidy theory explains tumor formation, the absence of immune surveillance, and the failure of chemotherapy. Cancer Genet Cytogenet 136: 66–72.

    Article  PubMed  CAS  Google Scholar 

  • Reish O, Gal R, Gaber E, Sher C, Bistritzer T, Amiel A (2002) Asynchronous replication of biallelically expressed loci: a new phenomenon in Turner syndrome. Genet Med 4: 439–443.

    Article  PubMed  CAS  Google Scholar 

  • Schubert R, Eggermann T, Hofstaetter C, Netzer BV, Knöpfle G, Schwanitz G (2002) Clinical, cytogenetic, and molecular findings in 45,X/47,XX,+18 mosaicism: clinical report and review of the literature. Am J Med Genet 110: 278–282.

    Article  PubMed  Google Scholar 

  • Shapiro BL (1983) Down syndrome: a disruption of homeostasis. Am J Med Genet 14: 241–269.

    Article  PubMed  CAS  Google Scholar 

  • Shi Q, King RW (2005) Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 13: 1038–1042.

    Article  CAS  Google Scholar 

  • Zinn AR, Page DC, Fisher EMC (1993) Turner syndrome: the case of the missing sex chromosome. Trends Genet 9: 90–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orit Reish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reish, O., Brosh, N., Gobazov, R. et al. Sporadic aneuploidy in PHA-stimulated lymphocytes of Turner’s syndrome patients. Chromosome Res 14, 527–534 (2006). https://doi.org/10.1007/s10577-006-1050-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1050-9

Key words

Navigation