Skip to main content

Advertisement

Log in

Melatonin and Parkinson Disease: Current Status and Future Perspectives for Molecular Mechanisms

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson disease (PD) is a chronic and neurodegenerative disease with motor and nonmotor symptoms. Multiple pathways are involved in the pathophysiology of PD, including apoptosis, autophagy, oxidative stress, inflammation, α-synuclein aggregation, and changes in the neurotransmitters. Preclinical and clinical studies have shown that melatonin supplementation is an appropriate therapy for PD. Administration of melatonin leads to inhibition of some pathways related to apoptosis, autophagy, oxidative stress, inflammation, α-synuclein aggregation, and dopamine loss in PD. In addition, melatonin improves some nonmotor symptom in patients with PD. Limited studies, however, have evaluated the role of melatonin on molecular mechanisms and clinical symptoms in PD. This review summarizes what is known regarding the impact of melatonin on PD in preclinical and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aarsland D, Bronnick K, Williams-Gray C, Weintraub D, Marder K, Kulisevsky J, Burn D, Barone P, Pagonabarraga J, Allcock L (2010) Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology 75(12):1062–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acuna-Castroviejo D, Coto-Montes A, Gaia Monti M, Ortiz GG, Reiter RJ (1997) Melatonin is protective against MPTP-induced striatal and hippocampal lesions. Life Sci 60(2):Pl23–Pl29

    CAS  PubMed  Google Scholar 

  • Agil A, Navarro-Alarcón M, Ruiz R, Abuhamadah S, El-Mir MY, Vázquez GF (2011) Beneficial effects of melatonin on obesity and lipid profile in young Zucker diabetic fatty rats. J Pineal Res 50(2):207–212

    CAS  PubMed  Google Scholar 

  • Ahmadi FA, Linseman DA, Grammatopoulos TN, Jones SM, Bouchard RJ, Freed CR, Heidenreich KA, Zawada WM (2003) The pesticide rotenone induces caspase-3-mediated apoptosis in ventral mesencephalic dopaminergic neurons. J Neurochem 87(4):914–921

    Article  CAS  PubMed  Google Scholar 

  • Alvira D, Tajes M, Verdaguer E, Acuña-Castroviejo D, Folch J, Camins A, Pallas M (2006) Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson’s disease. J Pineal Res 40(3):251–258

    Article  CAS  PubMed  Google Scholar 

  • Angeline MS, Chaterjee P, Anand K, Ambasta R, Kumar P (2012) Rotenone-induced parkinsonism elicits behavioral impairments and differential expression of parkin, heat shock proteins and caspases in the rat. Neuroscience 220:291–301

    Article  CAS  Google Scholar 

  • Anglade P, Vyas S, Javoy-Agid F, Herrero M, Michel P, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch E, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12(1):25–32

    CAS  PubMed  Google Scholar 

  • Annunziato L, Amoroso S, Pannaccione A, Cataldi M, Pignataro G, D’Alessio A, Sirabella R, Secondo A, Sibaud L, Di Renzo G (2003) Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol Lett 139(2–3):125–133

    Article  CAS  PubMed  Google Scholar 

  • Antolin I, Mayo JC, Sainz RM, del Brio Mde L, Herrera F, Martin V, Rodriguez C (2002) Protective effect of melatonin in a chronic experimental model of Parkinson’s disease. Brain Res 943(2):163–173

    Article  CAS  PubMed  Google Scholar 

  • Balash Y, Korczyn AD, Migirov AA, Gurevich T (2019) Quality of life in Parkinson’s disease: a gender specific perspective. Acta Neurol Scand. https://doi.org/10.1111/ane.13095

    Article  PubMed  Google Scholar 

  • Beker-Acay M, Turamanlar O, Horata E, Unlu E, Fidan N, Oruc S (2016) Assessment of pineal gland volume and calcification in healthy subjects: is it related to aging? J Belg Soc Radiol 100(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  • Berendse HW, Booij J, Francot CM, Bergmans PL, Hijman R, Stoof JC, Wolters EC (2001) Subclinical dopaminergic dysfunction in asymptomatic Parkinson’s disease patients’ relatives with a decreased sense of smell. Ann Neurol 50(1):34–41

    Article  CAS  PubMed  Google Scholar 

  • Blum D, Wu Y, Nissou M-F, Arnaud S, Benabid A-L, Verna J-M (1997) p53 and Bax activation in 6-hydroxydopamine-induced apoptosis in PC12 cells. Brain Res 751(1):139–142

    Article  CAS  PubMed  Google Scholar 

  • Borzabadi S, Oryan S, Eidi A, Aghadavod E, Kakhaki RD, Tamtaji OR, Taghizadeh M, Asemi Z (2018) The effects of probiotic supplementation on gene expression related to inflammation, insulin and lipid in patients with Parkinson’s disease: a randomized, double-blind, placebo-controlled trial. Arch Iran Med (AIM) 21(7):289

    Google Scholar 

  • Breen DP, Vuono R, Nawarathna U, Fisher K, Shneerson JM, Reddy AB, Barker RA (2014) Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol 71(5):589–595. https://doi.org/10.1001/jamaneurol.2014.65

    Article  PubMed  PubMed Central  Google Scholar 

  • Breen DP, Nombela C, Vuono R, Jones PS, Fisher K, Burn DJ, Brooks DJ, Reddy AB, Rowe JB, Barker RA (2016) Hypothalamic volume loss is associated with reduced melatonin output in Parkinson’s disease. Mov Disord 31(7):1062–1066. https://doi.org/10.1002/mds.26592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brito-Armas J, Baekelandt V, Castro-Hernández J, González-Hernández T, Rodríguez M, Castro R (2013) Melatonin prevents dopaminergic cell loss induced by lentiviral vectors expressing A30P mutant alpha-synuclein. Histol Histopathol 28(8):999–1006

    CAS  PubMed  Google Scholar 

  • Bumb JM, Schilling C, Enning F, Haddad L, Paul F, Lederbogen F, Deuschle M, Schredl M, Nolte I (2014) Pineal gland volume in primary insomnia and healthy controls: a magnetic resonance imaging study. J Sleep Res 23(3):276–282

    Article  Google Scholar 

  • Cai Y, Liu S, Sothern R, Xu S, Chan P (2010) Expression of clock genes Per1 and Bmal1 in total leukocytes in health and Parkinson’s disease. Eur J Neurol 17(4):550–554

    Article  CAS  PubMed  Google Scholar 

  • Cao JP, Niu HY, Wang HJ, Huang XG, Gao DS (2013) NF-κB p65/p52 plays a role in GDNF up-regulating Bcl-2 and Bcl-w expression in 6-OHDA-induced apoptosis of MN9D cell. Int J Neurosci 123(10):705–710

    Article  CAS  PubMed  Google Scholar 

  • Carrillo-Vico A, Reiter RJ, Lardone PJ, Herrera JL, Fernández-Montesinos R, Guerrero JM, Pozo D (2006) The modulatory role of melatonin on immune responsiveness. Curr Opin Investig Drugs 7(5):423

    CAS  PubMed  Google Scholar 

  • Chang CF, Huang HJ, Lee HC, Hung KC, Wu RT, Lin AMY (2012) Melatonin attenuates kainic acid-induced neurotoxicity in mouse hippocampus via inhibition of autophagy and α-synuclein aggregation. J Pineal Res 52(3):312–321

    Article  CAS  PubMed  Google Scholar 

  • Chen ST, Chuang JI, Hong MH, Eric I, Li C (2002) Melatonin attenuates MPP+-induced neurodegeneration and glutathione impairment in the nigrostriatal dopaminergic pathway. J Pineal Res 32(4):262–269

    Article  CAS  PubMed  Google Scholar 

  • Chen LJ, Gao YQ, Li XJ, Shen DH, Sun FY (2005) Melatonin protects against MPTP/MPP+-induced mitochondrial DNA oxidative damage in vivo and in vitro. J Pineal Res 39(1):34–42

    Article  PubMed  CAS  Google Scholar 

  • Cheng B, Yang X, Hou Z, Lin X, Meng H, Li Z, Liu S (2007) D-β-hydroxybutyrate inhibits the apoptosis of PC12 cells induced by 6-OHDA in relation to up-regulating the ratio of Bcl-2/Bax mRNA. Auton Neurosci 134(1–2):38–44

    Article  CAS  PubMed  Google Scholar 

  • Choi S-H, Aid S, Bosetti F (2009) The distinct roles of cyclooxygenase-1 and-2 in neuroinflammation: implications for translational research. Trends Pharmacol Sci 30(4):174–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang JI, Pan IL, Hsieh CY, Huang CY, Chen PC, Shin JW (2016) Melatonin prevents the dynamin-related protein 1-dependent mitochondrial fission and oxidative insult in the cortical neurons after 1-methyl-4-phenylpyridinium treatment. J Pineal Res 61(2):230–240

    Article  CAS  PubMed  Google Scholar 

  • Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM (2001) Parkin ubiquitinates the α-synuclein–interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 7(10):1144

    Article  CAS  PubMed  Google Scholar 

  • Connolly BS, Lang AE (2014) Pharmacological treatment of Parkinson disease: a review. JAMA 311(16):1670–1683

    Article  PubMed  CAS  Google Scholar 

  • Delucca BJ, Richardson RM, Stewart JT (2018) Melatonin treatment of visual hallucinations in Parkinson disease. J Clin Psychopharmacol 38(5):532–534

    Article  PubMed  Google Scholar 

  • Díaz-Casado ME, Lima E, García JA, Doerrier C, Aranda P, Sayed RK, Guerra-Librero A, Escames G, López LC, Acuña-Castroviejo D (2016) Melatonin rescues zebrafish embryos from the parkinsonian phenotype restoring the parkin/PINK 1/DJ-1/MUL 1 network. J Pineal Res 61(1):96–107

    Article  PubMed  CAS  Google Scholar 

  • Dominguez-Rodriguez A (2012) Melatonin in cardiovascular disease. Taylor & Francis, Routledge

    Book  Google Scholar 

  • Dominguez-Rodriguez A, Abreu-Gonzalez P, Reiter RJ (2012) Melatonin and cardiovascular disease: myth or reality? Rev Esp Cardiol 65(03):215–218

    Article  PubMed  Google Scholar 

  • Dowling GA, Mastick J, Colling E, Carter JH, Singer CM, Aminoff MJ (2005) Melatonin for sleep disturbances in Parkinson’s disease. Sleep Med 6(5):459–466

    Article  PubMed  Google Scholar 

  • Dubocovich ML, Markowska M (2005) Functional MT 1 and MT 2 melatonin receptors in mammals. Endocrine 27(2):101–110

    Article  CAS  PubMed  Google Scholar 

  • El-Agnaf OM, Jakes R, Curran MD, Middleton D, Ingenito R, Bianchi E, Pessi A, Neill D, Wallace A (1998) Aggregates from mutant and wild-type α-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of β-sheet and amyloid-like filaments. FEBS Lett 440(1–2):71–75

    Article  CAS  PubMed  Google Scholar 

  • Eller M, Williams DR (2011) α-Synuclein in Parkinson disease and other neurodegenerative disorders. Clin Chem Lab Med 49(3):403–408

    Article  CAS  PubMed  Google Scholar 

  • Espino J, Pariente JA, Rodríguez AB (2011) Role of melatonin on diabetes-related metabolic disorders. World J Diabetes 2(6):82

    Article  PubMed  PubMed Central  Google Scholar 

  • Farez MF, Mascanfroni ID, Méndez-Huergo SP, Yeste A, Murugaiyan G, Garo LP, Aguirre MEB, Patel B, Ysrraelit MC, Zhu C (2015) Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell 162(6):1338–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flower TR, Chesnokova LS, Froelich CA, Dixon C, Witt SN (2005) Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson’s disease. J Mol Biol 351(5):1081–1100

    Article  CAS  PubMed  Google Scholar 

  • Furuya T, Hayakawa H, Yamada M, Yoshimi K, Hisahara S, Miura M, Mizuno Y, Mochizuki H (2004) Caspase-11 mediates inflammatory dopaminergic cell death in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson’s disease. J Neurosci 24(8):1865–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 51(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Gilks WP, Abou-Sleiman PM, Gandhi S, Jain S, Singleton A, Lees AJ, Shaw K, Bhatia KP, Bonifati V, Quinn NP (2005) A common LRRK2 mutation in idiopathic Parkinson’s disease. The Lancet 365(9457):415–416

    CAS  Google Scholar 

  • Gomez-Lazaro M, Galindo MF, Concannon CG, Segura MF, Fernandez-Gomez FJ, Llecha N, Comella JX, Prehn JH, Jordan J (2008) 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. J Neurochem 104(6):1599–1612

    Article  CAS  PubMed  Google Scholar 

  • Grosshans M, Vollmert C, Vollstaedt-Klein S, Nolte I, Schwarz E, Wagner X, Leweke M, Mutschler J, Kiefer F, Malte Bumb J (2016) The association of pineal gland volume and body mass in obese and normal weight individuals: a pilot study. Psychiatri Danub 28(3):220–224

    CAS  Google Scholar 

  • Gu Z, Wang B, Zhang Y-B, Ding H, Zhang Y, Yu J, Gu M, Chan P, Cai Y (2015) Association of ARNTL and PER1 genes with Parkinson’s disease: a case-control study of Han Chinese. Sci Rep 5:15891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 35(3):627–634

    CAS  PubMed  Google Scholar 

  • Hill SM, Cheng C, Yuan L, Mao L, Jockers R, Dauchy B, Blask DE (2013) Age-related decline in melatonin and its MT1 receptor are associated with decreased sensitivity to melatonin and enhanced mammary tumor growth. Curr Aging Sci 6(1):125–133

    Article  CAS  PubMed  Google Scholar 

  • Hughes A, Daniel S, Kilford L, Lees A (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinicopathological study of 100 cases. Neurol Neurosurg Psychiatry 55(3):181–184

    Article  CAS  Google Scholar 

  • Hussein MR, Ahmed OG, Hassan AF, Ahmed MA (2007) Intake of melatonin is associated with amelioration of physiological changes, both metabolic and morphological pathologies associated with obesity: an animal model. Int J Exp Pathol 88(1):19–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iaccarino C, Crosio C, Vitale C, Sanna G, Carrì MT, Barone P (2007) Apoptotic mechanisms in mutant LRRK2-mediated cell death. Hum Mol Genet 16(11):1319–1326

    Article  CAS  PubMed  Google Scholar 

  • Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2(1):141

    Article  CAS  PubMed  Google Scholar 

  • Jankovic J, Stacy M (2007) Medical management of levodopa-associated motor complications in patients with Parkinson’s disease. CNS Drugs 21(8):677–692

    Article  CAS  PubMed  Google Scholar 

  • Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(S3):S26–S38

    Article  CAS  PubMed  Google Scholar 

  • Jin BK, Shin DY, Jeong MY, Gwag MR, Baik HW, Yoon KS, Cho YH, Joo WS, Kim YS, Baik HH (1998) Melatonin protects nigral dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP +) neurotoxicity in rats. Neurosci Lett 245(2):61–64

    Article  CAS  PubMed  Google Scholar 

  • Kalf JG, Borm GF, de Swart BJ, Bloem BR, Zwarts MJ, Munneke M (2011) Reproducibility and validity of patient-rated assessment of speech, swallowing, and saliva control in Parkinson’s disease. Arch Phys Med Rehabil 92(7):1152–1158

    Article  PubMed  Google Scholar 

  • Karasek M, Reiter R (2002) Melatonin and aging. Neuro Endocrinol Lett 23:14–16

    CAS  PubMed  Google Scholar 

  • Kim J-Y, Lee Y-D, Kim B-J, Kim S-P, Kim D-H, Jo K-J, Lee S-K, Lee K-H, Baik H-W (2012) Melatonin improves inflammatory cytokine profiles in lung inflammation associated with sleep deprivation. Mol Med Rep 5(5):1281–1284

    CAS  PubMed  Google Scholar 

  • Kunz D, Mahlberg R (2010) A two-part, double-blind, placebo-controlled trial of exogenous melatonin in REM sleep behaviour disorder. J Sleep Res 19(4):591–596

    Article  PubMed  Google Scholar 

  • Kunz D, Schmitz S, Mahlberg R, Mohr A, Stoter C, Wolf KJ, Herrmann WM (1999) A new concept for melatonin deficit: on pineal calcification and melatonin excretion. Neuropsychopharmacology 21(6):765–772. https://doi.org/10.1016/s0893-133x(99)00069-x

    Article  CAS  PubMed  Google Scholar 

  • Lee FJ, Liu F, Pristupa ZB, Niznik HB (2001) Direct binding and functional coupling of α-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 15(6):916–926

    Article  CAS  PubMed  Google Scholar 

  • Leibowitz A, Volkov A, Voloshin K, Shemesh C, Barshack I, Grossman E (2016) Melatonin prevents kidney injury in a high salt diet-induced hypertension model by decreasing oxidative stress. J Pineal Res 60(1):48–54

    Article  CAS  PubMed  Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocyteS1. J Am Chem Soc 80(10):2587

    Article  CAS  Google Scholar 

  • Li J-H, Yu J-P, Yu H-G, Xu X-M, Yu L-L, Liu J, Luo H-S (2005) Melatonin reduces inflammatory injury through inhibiting NF-κB activation in rats with colitis. Mediat Inflamm 4:185–193

    Article  CAS  Google Scholar 

  • Lima LA, Lopes MJP, Costa RO, Lima FAV, Neves KRT, Calou IB, Andrade GM, Viana GS (2018) Vitamin D protects dopaminergic neurons against neuroinflammation and oxidative stress in hemiparkinsonian rats. J Neuroinflammation 15(1):249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin CH, Huang JY, Ching CH, Chuang JI (2008) Melatonin reduces the neuronal loss, downregulation of dopamine transporter, and upregulation of D2 receptor in rotenone-induced parkinsonian rats. J Pineal Res 44(2):205–213. https://doi.org/10.1111/j.1600-079X.2007.00510.x

    Article  CAS  PubMed  Google Scholar 

  • López A, Ortiz F, Doerrier C, Venegas C, Fernández-Ortiz M, Aranda P, Díaz-Casado ME, Fernández-Gil B, Barriocanal-Casado E, Escames G (2017) Mitochondrial impairment and melatonin protection in parkinsonian mice do not depend of inducible or neuronal nitric oxide synthases. PLoS ONE 12(8):e0183090

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch-Day MA, Mao K, Wang K, Zhao M, Klionsky DJ (2012) The role of autophagy in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahboubi M, Taghizadeh M, Talaei SA, Firozeh SMT, Rashidi AA, Tamtaji OR (2016) Combined administration of Melissa officinalis and Boswellia serrata extracts in an animal model of memory. Iran J Psychiatry Behav Sci 10(3):e681

    Article  PubMed  PubMed Central  Google Scholar 

  • Mansouri Z, Sabetkasaei M, Moradi F, Masoudnia F, Ataie A (2012) Curcumin has neuroprotection effect on homocysteine rat model of Parkinson. J Mol Neurosci 47(2):234–242

    Article  CAS  PubMed  Google Scholar 

  • Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287(5456):1265–1269

    Article  CAS  PubMed  Google Scholar 

  • Mattam U, Jagota A (2015) Daily rhythms of serotonin metabolism and the expression of clock genes in suprachiasmatic nucleus of rotenone-induced Parkinson’s disease male Wistar rat model and effect of melatonin administration. Biogerontology 16(1):109–123

    Article  CAS  PubMed  Google Scholar 

  • Mayo JC, Sainz RM, Uria H, Antolin I, Esteban MM, Rodriguez C (1998) Melatonin prevents apoptosis induced by 6-hydroxydopamine in neuronal cells: implications for Parkinson’s disease. J Pineal Res 24(3):179–192

    Article  CAS  PubMed  Google Scholar 

  • Medeiros CAM, De Bruin PFC, Lopes LA, Magalhães MC, de Lourdes Seabra M, de Bruin VMS (2007) Effect of exogenous melatonin on sleep and motor dysfunction in Parkinson’s disease. J Neurol 254(4):459–464

    Article  CAS  PubMed  Google Scholar 

  • Mei J-m, Niu C-s (2014) Effects of CDNF on 6-OHDA-induced apoptosis in PC12 cells via modulation of Bcl-2/Bax and caspase-3 activation. Neurol Sci 35(8):1275–1280

    Article  PubMed  Google Scholar 

  • Mercolini L, Mandrioli R, Raggi MA (2012) Content of melatonin and other antioxidants in grape-related foodstuffs: measurement using a MEPS-HPLC-F method. J Pineal Res 53(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Meredith GE, Rademacher DJ (2011) MPTP mouse models of Parkinson’s disease: an update. J Parkinson’s Dis 1(1):19–33

    Article  CAS  Google Scholar 

  • Moore C, Siopes T (2000) Effects of lighting conditions and melatonin supplementation on the cellular and humoral immune responses in Japanese quail Coturnix coturnix japonica. Gen Comp Endocrinol 119(1):95–104

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Casares FC, Padillo FJ, Briceño J, Collado JA, Muñoz-Castañeda JR, Ortega R, Cruz A, Túnez I, Montilla P, Pera C (2006) Melatonin reduces apoptosis and necrosis induced by ischemia/reperfusion injury of the pancreas. J Pineal Res 40(3):195–203

    Article  PubMed  CAS  Google Scholar 

  • Naskar A, Manivasagam T, Chakraborty J, Singh R, Thomas B, Dhanasekaran M, Mohanakumar KP (2013) Melatonin synergizes with low doses of L-DOPA to improve dendritic spine density in the mouse striatum in experimental Parkinsonism. J Pineal Res 55(3):304–312

    Article  CAS  PubMed  Google Scholar 

  • Naskar A, Prabhakar V, Singh R, Dutta D, Mohanakumar KP (2015a) Melatonin enhances L-DOPA therapeutic effects, helps to reduce its dose, and protects dopaminergic neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. J Pineal Res 58(3):262–274. https://doi.org/10.1111/jpi.12212

    Article  CAS  PubMed  Google Scholar 

  • Naskar A, Prabhakar V, Singh R, Dutta D, Mohanakumar KP (2015b) Melatonin enhances L-DOPA therapeutic effects, helps to reduce its dose, and protects dopaminergic neurons in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced parkinsonism in mice. J Pineal Res 58(3):262–274

    Article  CAS  PubMed  Google Scholar 

  • Ochu EE, Rothwell NJ, Waters CM (1998) Caspases mediate 6-hydroxydopamine-induced apoptosis but not necrosis in PC12 cells. J Neurochem 70(6):2637–2640

    Article  CAS  PubMed  Google Scholar 

  • Ortiz GG, Pacheco-Moisés FP, Gómez-Rodríguez VM, González-Renovato ED, Torres-Sánchez ED, Ramírez-Anguiano AC (2013) Fish oil, melatonin and vitamin E attenuates midbrain cyclooxygenase-2 activity and oxidative stress after the administration of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Metab Brain Dis 28(4):705–709

    Article  CAS  PubMed  Google Scholar 

  • Ozsoy O, Yildirim FB, Ogut E, Kaya Y, Tanriover G, Parlak H, Agar A, Aslan M (2015) Melatonin is protective against 6-hydroxydopamine-induced oxidative stress in a hemiparkinsonian rat model. Free Radic Res 49(8):1004–1014. https://doi.org/10.3109/10715762.2015.1027198

    Article  CAS  PubMed  Google Scholar 

  • Pacelli C, Rotundo G, Lecce L, Menga M, Bidollari E, Scrima R, Cela O, Piccoli C, Cocco T, Vescovi AL (2019) Parkin mutation affects clock gene-dependent energy metabolism. Int J Mol Sci 20(11):2772

    Article  PubMed Central  Google Scholar 

  • Paltsev MA, Polyakova VO, Kvetnoy IM, Anderson G, Kvetnaia TV, Linkova NS, Paltseva EM, Rubino R, De Cosmo S, De Cata A, Mazzoccoli G (2016) Morphofunctional and signaling molecules overlap of the pineal gland and thymus: role and significance in aging. Oncotarget 7(11):11972–11983. https://doi.org/10.18632/oncotarget.7863

    Article  PubMed  PubMed Central  Google Scholar 

  • Patki G, Lau YS (2011) Melatonin protects against neurobehavioral and mitochondrial deficits in a chronic mouse model of Parkinson’s disease. Pharmacol Biochem Behav 99(4):704–711. https://doi.org/10.1016/j.pbb.2011.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul R, Phukan BC, Justin Thenmozhi A, Manivasagam T, Bhattacharya P, Borah A (2018) Melatonin protects against behavioral deficits, dopamine loss and oxidative stress in homocysteine model of Parkinson’s disease. Life Sci 192:238–245. https://doi.org/10.1016/j.lfs.2017.11.016

    Article  CAS  PubMed  Google Scholar 

  • Perez-Lloret S, Nègre-Pagès L, Ojero-Senard A, Damier P, Destée A, Tison F, Merello M, Rascol O, Group CS (2012) Oro-buccal symptoms (dysphagia, dysarthria, and sialorrhea) in patients with Parkinson’s disease: preliminary analysis from the French COPARK cohort. Eur J Neurol 19(1):28–37

    Article  CAS  PubMed  Google Scholar 

  • Ran D, Xie B, Gan Z, Sun X, Gu H, Yang J (2018) Melatonin attenuates hLRRK2-induced long-term memory deficit in a Drosophila model of Parkinson’s disease. Biomed Rep 9(3):221–226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter RJ, Tan D-x, Osuna C, Gitto E (2000) Actions of melatonin in the reduction of oxidative stress. J Biomed Sci 7(6):444–458

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Burkhardt S, Manchester LC (2001) Melatonin in plants. Nutr Rev 59(9):286–290

    Article  CAS  PubMed  Google Scholar 

  • Reppert SM (1997) Melatonin receptors: molecular biology of a new family of G protein-coupled receptors. J Biol Rhythms 12(6):528–531

    Article  CAS  PubMed  Google Scholar 

  • Saha AR, Ninkina NN, Hanger DP, Anderton BH, Davies AM, Buchman VL (2000) Induction of neuronal death by α-synuclein. Eur J Neurosci 12(8):3073–3077

    Article  CAS  PubMed  Google Scholar 

  • Saravanan KS, Sindhu KM, Mohanakumar KP (2007) Melatonin protects against rotenone-induced oxidative stress in a hemiparkinsonian rat model. J Pineal Res 42(3):247–253. https://doi.org/10.1111/j.1600-079X.2006.00412.x

    Article  CAS  PubMed  Google Scholar 

  • Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23(34):10756–10764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigurdardottir LG, Markt SC, Sigurdsson S, Aspelund T, Fall K, Schernhammer E, Rider JR, Launer L, Harris T, Stampfer MJ, Gudnason V, Czeisler CA, Lockley SW, Valdimarsdottir UA, Mucci LA (2016) Pineal gland volume assessed by MRI and its correlation with 6-sulfatoxymelatonin levels among older men. J Biol Rhythms 31(5):461–469. https://doi.org/10.1177/0748730416656948

    Article  PubMed  PubMed Central  Google Scholar 

  • Simola N, Morelli M, Carta AR (2007) The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 11(3–4):151–167

    Article  CAS  PubMed  Google Scholar 

  • Singhal NK, Srivastava G, Patel DK, Jain SK, Singh MP (2011) Melatonin or silymarin reduces maneb-and paraquat-induced Parkinson’s disease phenotype in the mouse. J Pineal Res 50(2):97–109

    CAS  PubMed  Google Scholar 

  • Skene DJ, Arendt J (2006) Human circadian rhythms: physiological and therapeutic relevance of light and melatonin. Ann Clin Biochem 43(5):344–353

    Article  CAS  PubMed  Google Scholar 

  • Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT (2012) Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol 351(2):152–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su L-Y, Li H, Lv L, Feng Y-M, Li G-D, Luo R, Zhou H-J, Lei X-G, Ma L, Li J-L (2015) Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation. Autophagy 11(10):1745–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Ran D, Zhao X, Huang Y, Long S, Liang F, Guo W, Nucifora FC, Gu H, Lu X (2016) Melatonin attenuates hLRRK2-induced sleep disturbances and synaptic dysfunction in a Drosophila model of Parkinson’s disease. Mol Med Rep 13(5):3936–3944

    Article  CAS  PubMed  Google Scholar 

  • Tamtaji OR, Mirhosseini N, Reiter RJ, Azami A, Asemi Z (2019a) Melatonin, a calpain inhibitor in the central nervous system: current status and future perspectives. J Cell Physiol 234(2):1001–1007

    Article  CAS  PubMed  Google Scholar 

  • Tamtaji OR, Mirhosseini N, Reiter RJ, Behnamfar M, Asemi Z (2019b) Melatonin and pancreatic cancer: current knowledge and future perspectives. J Cell Physiol 234(5):5372–5378

    Article  CAS  PubMed  Google Scholar 

  • Tamtaji OR, Taghizadeh M, Kakhaki RD, Kouchaki E, Bahmani F, Borzabadi S, Oryan S, Mafi A, Asemi Z (2019c) Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: a randomized, double-blind, placebo-controlled trial. Clin Nutr 38(3):1031–1035

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Hardeland R, Lopez-Burillo S, Mayo JC, Sainz RM, Reiter RJ (2003) Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J Pineal Res 34(1):75–78

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Zanghi BM, Manchester LC, Reiter RJ (2014) Melatonin identified in meats and other food stuffs: potentially nutritional impact. J Pineal Res 57(2):213–218

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Hardeland R, Back K, Manchester LC, Alatorre-Jimenez MA, Reiter RJ (2016) On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J Pineal Res 61(1):27–40

    Article  CAS  PubMed  Google Scholar 

  • Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, Marras C, Bhudhikanok GS, Kasten M, Chade AR (2011) Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 119(6):866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanvi B, Lo T (2004) Long term motor complications of levodopa: clinical features, mechanisms, and management strategies. Postgrad Med J 80(946):452–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiele SL, Warre R, Nash JE (2012) Development of a unilaterally-lesioned 6-OHDA mouse model of Parkinson’s disease. J Vis Exp. https://doi.org/10.3791/3234

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas B, Mohanakumar KP (2004) Melatonin protects against oxidative stress caused by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine in the mouse nigrostriatum. J Pineal Res 36(1):25–32

    Article  CAS  PubMed  Google Scholar 

  • Torres-Farfan C, Rocco V, Monso C, Valenzuela F, Campino C, Germain A, Torrealba F, Valenzuela G, Seron-Ferre M (2006) Maternal melatonin effects on clock gene expression in a nonhuman primate fetus. Endocrinology 147(10):4618–4626

    Article  CAS  PubMed  Google Scholar 

  • Toth C, Brown MS, Furtado S, Suchowersky O, Zochodne D (2008) Neuropathy as a potential complication of levodopa use in Parkinson’s disease. Mov Disord 23(13):1850–1859

    Article  PubMed  Google Scholar 

  • Venkatesh VG, Rajasankar S, Swaminathan WJ, Prabu K, Ramkumar M (2019) Antiapoptotic role of Agaricus blazei extract in rodent model of Parkinson’s disease. Front Biosci (Elite edition) 11:12–19

    Google Scholar 

  • Viswanath V, Wu Y, Boonplueang R, Chen S, Stevenson FF, Yantiri F, Yang L, Beal MF, Andersen JK (2001) Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinson’s disease. J Neurosci 21(24):9519–9528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Gall C, Weaver DR, Moek J, Jilg A, Stehle JH, Korf HW (2005) Melatonin plays a crucial role in the regulation of rhythmic clock gene expression in the mouse pars tuberalis. Ann NY Acad Sci 1040(1):508–511

    Article  CAS  Google Scholar 

  • Waldhauser F, Weiszenbacher G, Tatzer E, Gisinger B, Waldhauser M, Schemper M, Frisch H (1988) Alterations in nocturnal serum melatonin levels in humans with growth and aging. J Clin Endocrinol Metab 66(3):648–652. https://doi.org/10.1210/jcem-66-3-648

    Article  CAS  PubMed  Google Scholar 

  • Wang JZ, Wang ZF (2006) Role of melatonin in Alzheimer-like neurodegeneration 1. Acta Pharmacol Sin 27(1):41–49

    Article  PubMed  CAS  Google Scholar 

  • Wang SF, Yen JC, Yin PH, Chi CW, Lee HC (2008) Involvement of oxidative stress-activated JNK signaling in the methamphetamine-induced cell death of human SH-SY5Y cells. Toxicology 246(2–3):234–241. https://doi.org/10.1016/j.tox.2008.01.020

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Lv D, Liu W, Li S, Chen J, Shen Y, Wang F, Hu L-F, Liu C-F (2018) Disruption of the circadian clock alters antioxidative defense via the SIRT1-BMAL1 pathway in 6-OHDA-induced models of Parkinson’s disease. Oxid Med Cell Longev 2018:4854732

    PubMed  PubMed Central  Google Scholar 

  • Winiarska K, Fraczyk T, Malinska D, Drozak J, Bryla J (2006) Melatonin attenuates diabetes-induced oxidative stress in rabbits. J Pineal Res 40(2):168–176

    Article  CAS  PubMed  Google Scholar 

  • Wu YH, Swaab DF (2005) The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res 38(3):145–152

    Article  CAS  PubMed  Google Scholar 

  • Xia XG, Harding T, Weller M, Bieneman A, Uney JB, Schulz JB (2001) Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci 98(18):10433–10438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada M, Kida K, Amutuhaire W, Ichinose F, Kaneki M (2010) Gene disruption of caspase-3 prevents MPTP-induced Parkinson’s disease in mice. Biochem Biophys Res Commun 402(2):312–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Yang Y, Fu Z, Li Y, Feng J, Luo J, Zhang Q, Wang Q, Tian Q (2011) Melatonin ameliorates Alzheimer-like pathological changes and spatial memory retention impairment induced by calyculin A. J Psychopharmacol 25(8):1118–1125

    Article  CAS  PubMed  Google Scholar 

  • Yildirim FB, Ozsoy O, Tanriover G, Kaya Y, Ogut E, Gemici B, Dilmac S, Ozkan A, Agar A, Aslan M (2014) Mechanism of the beneficial effect of melatonin in experimental Parkinson’s disease. Neurochem Int 79:1–11

    Article  CAS  PubMed  Google Scholar 

  • Zampol MA, Barros MH (2018) Melatonin improves survival and respiratory activity of yeast cells challenged by alpha-synuclein and menadione. Yeast 35(3):281–290

    Article  CAS  PubMed  Google Scholar 

  • Zarranz JJ, Alegre J, Gómez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atarés B (2004) The new mutation, E46K, of α-synuclein causes parkinson and Lewy body dementia. Ann Neurol 55(2):164–173

    Article  CAS  PubMed  Google Scholar 

  • Zawilska JB, Skene DJ, Arendt J (2009) Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Rep 61(3):383–410

    Article  CAS  PubMed  Google Scholar 

  • Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L (2017) Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol 155:96–119

    Article  CAS  PubMed  Google Scholar 

  • Zuch CL, Nordstroem VK, Briedrick LA, Hoernig GR, Granholm AC, Bickford PC (2000) Time course of degenerative alterations in nigral dopaminergic neurons following a 6-hydroxydopamine lesion. J Comp Neurol 427(3):440–454

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No specific source of funding is associated with this work.

Author information

Authors and Affiliations

Authors

Contributions

O-RT, RJ-R, RA, ED, EK, and ZA contributed in the conception and design of the work and drafting of the manuscript. All authors confirmed the final version for submission.

Corresponding author

Correspondence to Zatollah Asemi.

Ethics declarations

Conflict of interest

The authors declare there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamtaji, O.R., Reiter, R.J., Alipoor, R. et al. Melatonin and Parkinson Disease: Current Status and Future Perspectives for Molecular Mechanisms. Cell Mol Neurobiol 40, 15–23 (2020). https://doi.org/10.1007/s10571-019-00720-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-019-00720-5

Keywords

Navigation