Skip to main content

Advertisement

Log in

VEGF-A165 Potently Induces Human Blood–Nerve Barrier Endothelial Cell Proliferation, Angiogenesis, and Wound Healing In Vitro

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Several mitogens such as vascular endothelial growth factor (VEGF) have been implicated in mammalian vascular proliferation and repair. However, the molecular mediators of human blood-nerve barrier (BNB) development and specialization are unknown. Primary human endoneurial endothelial cells (pHEndECs) were expanded in vitro and specific mitogen receptors detected by western blot. pHEndECs were cultured with basal medium containing different mitogen concentrations with or without heparin. Non-radioactive cell proliferation, Matrigel-induced angiogenesis and sterile micropipette injury wound healing assays were performed. Proliferation rates, number and total length of induced microvessels, and rate of endothelial cell monolayer wound healing were determined and compared to basal conditions. VEGF-A165 in the presence of heparin, was the most potent inducer of pHEndEC proliferation, angiogenesis, and wound healing in vitro. 1.31 nM VEGF-A165 induced ~110 % increase in cell proliferation relative to basal conditions (∼51 % without heparin). 2.62 pM VEGF-A165 induced a three-fold increase in mean number of microvessels and 3.9-fold increase in total capillary length/field relative to basal conditions. In addition, 0.26 nM VEGF-A165 induced ∼1.3-fold increased average rate of endothelial wound healing 4–18 h after endothelial monolayer injury, mediated by increased cell migration. VEGF-A165 was the only mitogen capable of complete wound closure, occurring within 30 h following injury via increased cell proliferation. This study demonstrates that VEGF-A165, in the presence of heparin, is a potent inducer of pHEndEC proliferation, angiogenesis, and wound healing in vitro. VEGF-A165 may be an important mitogen necessary for human BNB development and recovery in response to peripheral nerve injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe M, Sano Y, Maeda T, Shimizu F, Kashiwamura Y, Haruki H, Saito K, Tasaki A, Kawai M, Terasaki T, Kanda T (2012) Establishment and characterization of human peripheral nerve microvascular endothelial cell lines: a new in vitro blood-nerve barrier (BNB) model. Cell Struct Funct 37(2):89–100

    Article  PubMed  CAS  Google Scholar 

  • Aird W (2007a) Phenotypic heterogeneity of the endothelium: I. structure, function, and mechanisms. Circ Res 100(2):158–173

    Article  PubMed  CAS  Google Scholar 

  • Aird W (2007b) Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 100(2):174–190

    Article  PubMed  CAS  Google Scholar 

  • Al Ahmad A, Gassmann M, Ogunshola O (2009) Maintaining blood-brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation. J Cell Physiol 218(3):612–622. doi:10.1002/jcp.21638

    Article  PubMed  CAS  Google Scholar 

  • Allt G, Lawrenson J (2000) The blood-nerve barrier: enzymes, transporters and receptors–a comparison with the blood-brain barrier. Brain Res Bull 52(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Arai K, Jin G, Navaratna D, Lo E (2009) Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke. FEBS J 276(17):4644–4652. doi:10.1111/j.1742-4658.2009.07176.x

    Article  PubMed  CAS  Google Scholar 

  • Ashikari-Hada S, Habuchi H, Kariya Y, Kimata K (2005) Heparin regulates vascular endothelial growth factor165-dependent mitogenic activity, tube formation, and its receptor phosphorylation of human endothelial cells. Comparison of the effects of heparin and modified heparins. J Biol Chem 280(36):31508–31515. doi:10.1074/jbc.M414581200

    Article  PubMed  CAS  Google Scholar 

  • Bell M, Weddell A (1984a) A descriptive study of the blood vessels of the sciatic nerve in the rat, man and other mammals. Brain 107(Pt 3):871–898

    Article  PubMed  Google Scholar 

  • Bell M, Weddell A (1984b) A morphometric study of intrafascicular vessels of mammalian sciatic nerve. Muscle Nerve 7(7):524–534

    Article  PubMed  CAS  Google Scholar 

  • Bendfeldt K, Radojevic V, Kapfhammer J, Nitsch C (2007) Basic fibroblast growth factor modulates density of blood vessels and preserves tight junctions in organotypic cortical cultures of mice: a new in vitro model of the blood-brain barrier. J Neurosci 27(12):3260–3267. doi:10.1523/JNEUROSCI.4033-06.2007

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt B, Ransohoff R (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26(9):485–495

    Article  PubMed  CAS  Google Scholar 

  • Förster C, Silwedel C, Golenhofen N, Burek M, Kietz S, Mankertz J, Drenckhahn D (2005) Occludin as direct target for glucocorticoid-induced improvement of blood-brain barrier properties in a murine in vitro system. J Physiol 565(Pt 2):475–486. doi:10.1113/jphysiol.2005.084038

    Article  PubMed  Google Scholar 

  • Galvan V, Greenberg D, Jin K (2006) The role of vascular endothelial growth factor in neurogenesis in adult brain. Mini Rev Med Chem 6(6):667–669

    Article  PubMed  CAS  Google Scholar 

  • Garcia C, Darland D, Massingham L, D’Amore P (2004) Endothelial cell-astrocyte interactions and TGF beta are required for induction of blood-neural barrier properties. Brain Res Dev Brain Res 152(1):25–38. doi:10.1016/j.devbrainres.2004.05.008

    Article  PubMed  CAS  Google Scholar 

  • Guo S, Lo E (2009) Dysfunctional cell–cell signaling in the neurovascular unit as a paradigm for central nervous system disease. Stroke 40(3 Suppl):S4–S7. doi:10.1161/STROKEAHA.108.534388

    Article  PubMed  Google Scholar 

  • Hirakawa H, Okajima S, Nagaoka T, Takamatsu T, Oyamada M (2003) Loss and recovery of the blood-nerve barrier in the rat sciatic nerve after crush injury are associated with expression of intercellular junctional proteins. Exp Cell Res 284(2):196–210

    Article  PubMed  CAS  Google Scholar 

  • Kanda T, Numata Y, Mizusawa H (2004) Chronic inflammatory demyelinating polyneuropathy: decreased claudin-5 and relocated ZO-1. J Neurol Neurosurg Psychiatry 75(5):765–769

    Article  PubMed  CAS  Google Scholar 

  • Kashiwamura Y, Sano Y, Abe M, Shimizu F, Haruki H, Maeda T, Kawai M, Kanda T (2011) Hydrocortisone enhances the function of the blood-nerve barrier through the up-regulation of claudin-5. Neurochem Res 36(5):849–855. doi:10.1007/s11064-011-0413-6

    Article  PubMed  CAS  Google Scholar 

  • Krizanac-Bengez L, Mayberg M, Janigro D (2004) The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology. Neurol Res 26(8):846–853

    Article  PubMed  CAS  Google Scholar 

  • Latker C, Shinowara N, Miller J, Rapoport S (1987) Differential localization of alkaline phosphatase in barrier tissues of the frog and rat nervous systems: a cytochemical and biochemical study. J Comp Neurol 264(3):291–302

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Kay E (2006) FGF-2-induced wound healing in corneal endothelial cells requires Cdc42 activation and Rho inactivation through the phosphatidylinositol 3-kinase pathway. Invest Ophthalmol Vis Sci 47(4):1376–1386. doi:10.1167/iovs.05-1223

    Article  PubMed  Google Scholar 

  • Lee JH, Lee H, Joung YK, Jung KH, Choi JH, Lee DH, Park KD, Hong SS (2011) The use of low molecular weight heparin–pluronic nanogels to impede liver fibrosis by inhibition the TGF-beta/Smad signaling pathway. Biomaterials 32(5):1438–1445. doi:10.1016/j.biomaterials.2010.10.023

    Article  PubMed  CAS  Google Scholar 

  • Malmgren L, Olsson Y (1980) Differences between the peripheral and the central nervous system in permeability to sodium fluorescein. J Comp Neurol 191(1):103–107. doi:10.1002/cne.901910106

    Article  PubMed  CAS  Google Scholar 

  • Man S, Ubogu E, Ransohoff R (2007) Inflammatory cell migration into the central nervous system: a few new twists on an old tale. Brain Pathol 17(2):243–250

    Article  PubMed  CAS  Google Scholar 

  • Man S, Ubogu E, Williams K, Tucky B, Callahan M, Ransohoff R (2008) Human brain microvascular endothelial cells and umbilical vein endothelial cells differentially facilitate leukocyte recruitment and utilize chemokines for T cell migration. Clin Dev Immunol 2008:384982

    Article  PubMed  Google Scholar 

  • Marchi N, Teng Q, Ghosh C, Fan Q, Nguyen M, Desai N, Bawa H, Rasmussen P, Masaryk T, Janigro D (2010) Blood-brain barrier damage, but not parenchymal white blood cells, is a hallmark of seizure activity. Brain Res 1353:176–186. doi:10.1016/j.brainres.2010.06.051

    Article  PubMed  CAS  Google Scholar 

  • McCaffrey TA, Falcone DJ, Brayton CF, Agarwal LA, Welt FG, Weksler BB (1989) Transforming growth factor-beta activity is potentiated by heparin via dissociation of the transforming growth factor-beta/alpha 2-macroglobulin inactive complex. J Cell Biol 109(1):441–448

    Article  PubMed  CAS  Google Scholar 

  • McCaffrey TA, Falcone DJ, Du B (1992) Transforming growth factor-beta 1 is a heparin-binding protein: identification of putative heparin-binding regions and isolation of heparins with varying affinity for TGF-beta 1. J Cell Physiol 152(2):430–440. doi:10.1002/jcp.1041520226

    Article  PubMed  CAS  Google Scholar 

  • Mu E, Ding R, An X, Li X, Chen S, Ma X (2012) Heparin attenuates lipopolysaccharide-induced acute lung injury by inhibiting nitric oxide synthase and TGF-beta/Smad signaling pathway. Thromb Res 129(4):479–485. doi:10.1016/j.thromres.2011.10.003

    Article  PubMed  CAS  Google Scholar 

  • Murphy H, Bakopoulos N, Dame M, Varani J, Ward P (1998) Heterogeneity of vascular endothelial cells: differences in susceptibility to neutrophil-mediated injury. Microvasc Res 56(3):203–211. doi:10.1006/mvre.1998.2110

    Article  PubMed  CAS  Google Scholar 

  • Olsson Y (1971) Studies on vascular permeability in peripheral nerves. IV. Distribution of intravenously injected protein tracers in the peripheral nervous system of various species. Acta Neuropathol 17(2):114–126

    Article  PubMed  CAS  Google Scholar 

  • Olsson Y (1990) Microenvironment of the peripheral nervous system under normal and pathological conditions. Crit Rev Neurobiol 5(3):265–311

    PubMed  CAS  Google Scholar 

  • Orte C, Lawrenson J, Finn T, Reid A, Allt G (1999) A comparison of blood-brain barrier and blood-nerve barrier endothelial cell markers. Anat Embryol (Berl) 199(6):509–517

    Article  CAS  Google Scholar 

  • Poduslo J, Curran G, Dyck P (1988) Increase in albumin, IgG, and IgM blood-nerve barrier indices in human diabetic neuropathy. Proc Natl Acad Sci USA 85(13):4879–4883

    Article  PubMed  CAS  Google Scholar 

  • Poduslo J, Curran G, Berg C (1994) Macromolecular permeability across the blood-nerve and blood-brain barriers. Proc Natl Acad Sci USA 91(12):5705–5709

    Article  PubMed  CAS  Google Scholar 

  • Pola R, Aprahamian TR, Bosch-Marce M, Curry C, Gaetani E, Flex A, Smith RC, Isner JM, Losordo DW (2004) Age-dependent VEGF expression and intraneural neovascularization during regeneration of peripheral nerves. Neurobiol Aging 25(10):1361–1368. doi:10.1016/j.neurobiolaging.2004.02.028

    Article  PubMed  CAS  Google Scholar 

  • Pummi K, Heape A, Grénman R, Peltonen J, Peltonen S (2004) Tight junction proteins ZO-1, occludin, and claudins in developing and adult human perineurium. J Histochem Cytochem 52(8):1037–1046

    Article  PubMed  CAS  Google Scholar 

  • Reina M, López A, Villanueva M, de Andrés J, León G (2000) Morphology of peripheral nerves, their sheaths, and their vascularization. Rev Esp Anestesiol Reanim 47(10):464–475

    PubMed  CAS  Google Scholar 

  • Reina M, López A, Villanueva M, De Andrés J, Machés F (2003) The blood-nerve barrier in peripheral nerves. Rev Esp Anestesiol Reanim 50(2):80–86

    PubMed  CAS  Google Scholar 

  • Rider CC (2006) Heparin/heparan sulphate binding in the TGF-beta cytokine superfamily. Biochem Soc Trans 34(Pt 3):458–460. doi:10.1042/BST0340458

    PubMed  CAS  Google Scholar 

  • Ropper AH, Gorson KC, Gooch CL, Weinberg DH, Pieczek A, Ware JH, Kershen J, Rogers A, Simovic D, Schratzberger P, Kirchmair R, Losordo D (2009) Vascular endothelial growth factor gene transfer for diabetic polyneuropathy: a randomized, double-blinded trial. Ann Neurol 65(4):386–393. doi:10.1002/ana.21675

    Article  PubMed  Google Scholar 

  • Roskoski R Jr (2007) Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 62(3):179–213. doi:10.1016/j.critrevonc.2007.01.006

    Article  PubMed  Google Scholar 

  • Sadowska G, Malaeb S, Stonestreet B (2010) Maternal glucocorticoid exposure alters tight junction protein expression in the brain of fetal sheep. Am J Physiol Heart Circ Physiol 298(1):H179–H188. doi:10.1152/ajpheart.00828.2009

    Article  PubMed  CAS  Google Scholar 

  • Sano Y, Shimizu F, Nakayama H, Abe M, Maeda T, Ohtsuki S, Terasaki T, Obinata M, Ueda M, Takahashi R, Kanda T (2007) Endothelial cells constituting blood-nerve barrier have highly specialized characteristics as barrier-forming cells. Cell Struct Funct 32(2):139–147

    Article  PubMed  CAS  Google Scholar 

  • Schlessinger J (2004) Common and distinct elements in cellular signaling via EGF and FGF receptors. Science 306(5701):1506–1507. doi:10.1126/science.1105396

    Article  PubMed  CAS  Google Scholar 

  • Schratzberger P, Walter DH, Rittig K, Bahlmann FH, Pola R, Curry C, Silver M, Krainin JG, Weinberg DH, Ropper AH, Isner JM (2001) Reversal of experimental diabetic neuropathy by VEGF gene transfer. J Clin Invest 107(9):1083–1092. doi:10.1172/JCI12188

    Article  PubMed  CAS  Google Scholar 

  • Shabb J (2001) Physiological substrates of cAMP-dependent protein kinase. Chem Rev 101(8):2381–2411

    Article  PubMed  CAS  Google Scholar 

  • Shibuya M (2008) Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep 41(4):278–286

    Article  PubMed  CAS  Google Scholar 

  • Shibuya M (2009) Brain angiogenesis in developmental and pathological processes: therapeutic aspects of vascular endothelial growth factor. FEBS J 276(17):4636–4643. doi:10.1111/j.1742-4658.2009.07175.x

    Article  PubMed  CAS  Google Scholar 

  • Shimizu F, Sano Y, Abe MA, Maeda T, Ohtsuki S, Terasaki T, Kanda T (2011a) Peripheral nerve pericytes modify the blood-nerve barrier function and tight junctional molecules through the secretion of various soluble factors. J Cell Physiol 226(1):255–266. doi:10.1002/jcp.22337

    Article  PubMed  CAS  Google Scholar 

  • Shimizu F, Sano Y, Haruki H, Kanda T (2011b) Advanced glycation end-products induce basement membrane hypertrophy in endoneurial microvessels and disrupt the blood-nerve barrier by stimulating the release of TGF-beta and vascular endothelial growth factor (VEGF) by pericytes. Diabetologia 54(6):1517–1526. doi:10.1007/s00125-011-2107-7

    Article  PubMed  CAS  Google Scholar 

  • Shimizu F, Sano Y, Saito K, Abe MA, Maeda T, Haruki H, Kanda T (2012) Pericyte-derived glial cell line-derived neurotrophic factor increase the expression of claudin-5 in the blood-brain barrier and the blood-nerve barrier. Neurochem Res 37(2):401–409. doi:10.1007/s11064-011-0626-8

    Article  PubMed  CAS  Google Scholar 

  • Smith C, Atchabahian A, Mackinnon S, Hunter D (2001) Development of the blood-nerve barrier in neonatal rats. Microsurgery 21(7):290–297

    Article  PubMed  CAS  Google Scholar 

  • Sobue K, Yamamoto N, Yoneda K, Hodgson M, Yamashiro K, Tsuruoka N, Tsuda T, Katsuya H, Miura Y, Asai K, Kato T (1999) Induction of blood-brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res 35(2):155–164

    Article  PubMed  CAS  Google Scholar 

  • Stonestreet B, Sadowska G, McKnight A, Patlak C, Petersson K (2000) Exogenous and endogenous corticosteroids modulate blood-brain barrier development in the ovine fetus. Am J Physiol Regul Integr Comp Physiol 279(2):R468–R477

    PubMed  CAS  Google Scholar 

  • Sun Y, Jin K, Xie L, Childs J, Mao X, Logvinova A, Greenberg D (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111(12):1843–1851. doi:10.1172/JCI17977

    PubMed  CAS  Google Scholar 

  • Takahashi M (2001) The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev 12(4):361–373

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Wang J, Kong X, Yang J, Guo L, Zheng F, Zhang L, Huang Y, Wan Y (2009) Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3 K/Akt pathway. Exp Cell Res 315(20):3521–3531. doi:10.1016/j.yexcr.2009.09.026

    Article  PubMed  CAS  Google Scholar 

  • Utsumi H, Chiba H, Kamimura Y, Osanai M, Igarashi Y, Tobioka H, Mori M, Sawada N (2000) Expression of GFRalpha-1, receptor for GDNF, in rat brain capillary during postnatal development of the BBB. Am J Physiol Cell Physiol 279(2):C361–C368

    PubMed  CAS  Google Scholar 

  • Wakefield L, Roberts A (2002) TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12(1):22–29

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Jin K, Mao X, Xie L, Banwait S, Marti H, Greenberg D (2007) VEGF-overexpressing transgenic mice show enhanced post-ischemic neurogenesis and neuromigration. J Neurosci Res 85(4):740–747. doi:10.1002/jnr.21169

    Article  PubMed  CAS  Google Scholar 

  • Weidenfeller C, Schrot S, Zozulya A, Galla H (2005) Murine brain capillary endothelial cells exhibit improved barrier properties under the influence of hydrocortisone. Brain Res 1053(1–2):162–174

    Article  PubMed  CAS  Google Scholar 

  • Yano K, Gale D, Massberg S, Cheruvu P, Monahan-Earley R, Morgan E, Haig D, von Andrian U, Dvorak A, Aird W (2007) Phenotypic heterogeneity is an evolutionarily conserved feature of the endothelium. Blood 109(2):613–615

    Article  PubMed  CAS  Google Scholar 

  • Yosef N, Ubogu EE (2012) GDNF restores human blood-nerve barrier function via RET tyrosine kinase-mediated cytoskeletal reorganization. Microvasc Res 83(3):298–310. doi:10.1016/j.mvr.2012.01.005

    Article  PubMed  CAS  Google Scholar 

  • Yosef N, Ubogu EE (2013) An immortalized human blood-nerve barrier endothelial cell line for in vitro permeability studies. Cell Mol Neurobiol 33(2):175–186. doi:10.1007/s10571-012-9882-7

    Article  PubMed  CAS  Google Scholar 

  • Yosef N, Xia R, Ubogu E (2010) Development and characterization of a novel human in vitro blood-nerve barrier model using primary endoneurial endothelial cells. J Neuropathol Exp Neurol 69(1):82–97

    Article  PubMed  Google Scholar 

  • Zheng Z, Yenari M (2004) Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol Res 26(8):884–892

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to Dr. Monique Stins for providing THBMECs. Aspects of this study were presented in part in abstract form at the 2011 American Academy of Neurology meeting, Honolulu, Hawaii, USA and the 2011 Peripheral Nerve Society meeting, Potomac, Maryland, USA. This study was supported by a Baylor College of Medicine New Investigator Start-Up Award (2007–2011). The Neuromuscular Immunopathology Research Laboratory is currently supported by the National Institutes of Health Grants R21 NS073702, R21 NS078226, and R01 NS075212, and a subaward P30 AI27767 to E.E.U. The funding sources had no involvement in the conduct of the research, manuscript preparation, data collection/analyses or decision to submit this work for publication. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Conflict of interest

There are no financial conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eroboghene E. Ubogu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, C.L., Yosef, N. & Ubogu, E.E. VEGF-A165 Potently Induces Human Blood–Nerve Barrier Endothelial Cell Proliferation, Angiogenesis, and Wound Healing In Vitro. Cell Mol Neurobiol 33, 789–801 (2013). https://doi.org/10.1007/s10571-013-9946-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-9946-3

Keywords

Navigation