Skip to main content
Log in

Metabolic and Structural Role of Thiamine in Nervous Tissues

  • Review
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In the literature, previous descriptions of the role of thiamine (B1 vitamin) focused mostly on its biochemical functions as a coenzyme precursor of some key enzymes of the carbohydrate metabolism. This report reviews recent developments on the metabolic and structural role of thiamine, e.g., the coenzyme and noncoenzyme functions of the vitamin. Taking into account analysis of our experimental data relating to the effects of thiamine deficiency on developing central nervous system (CNS) and data available in literature, we seek to establish a clear difference between the metabolic and structural role of thiamine. Our experimental data indicate that the specific and nonspecific effects express two diametrically diverse functions of thiamine in development: the nonspecific effects show up the metabolic consequences of thiamine deficiency resulting in apoptosis and severe cellular deficit; inversely, the specific effects announced the structural consequences of thiamine deficiency, described as cellular membrane damage, irregular and ectopic cells. The review highlights the existence of noncoenzyme functions of this vitamin through its interactions with biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aberle NSII, Burd L, Zhao BH, Ren J (2004) Acetaldehyde-induced cardiac contractile dysfunction may be alleviated by vitamin B1 but not vitamins B6 or B12. Alcohol Alcohol 39:450–454. doi:10.1093/alcalc/agh085

    PubMed  CAS  Google Scholar 

  • Bâ A (2005) Functional vulnerability of developing central nervous system to maternal thiamine deficiencies in the rat. Dev Psychobiol 47:408–414. doi:10.1002/dev.20105

    Article  PubMed  CAS  Google Scholar 

  • Bâ A, Seri BV (1993) Functional development of central nervous system in the rat: ontogeny of nociceptive thresholds. Physiol Behav 54:403–405. doi:10.1016/0031-9384(93)90130-8

    Article  PubMed  Google Scholar 

  • Bâ A, Seri BV (1995) Psychomotor functions in developing rats: ontogenetic approach to structure-function relationships. Neurosci Biobehav Rev 19:413–425. doi:10.1016/0149-7634(94)00042-Y

    Article  PubMed  Google Scholar 

  • Bâ A, N’Douba V, d’Almeida MA, Seri BV (2005) Effects of maternal thiamine deficiencies on the pyramidal and granule cells of the hippocampus of rat pups. Acta Neurobiol Exp (Warsz) 65:387–398

    Google Scholar 

  • Bâ A, Seri BV, Aka KJ, Glin L, Tako A (1999) Comparative effects of developmental thiamine deficiencies and ethanol exposure on the morphometry of the CA3 pyramidal cells. Neurotoxicol Teratol 21:579–586. doi:10.1016/S0892-0362(99)00014-8

    Article  PubMed  Google Scholar 

  • Bâ A, Seri BV, Han SH (1996) Thiamine administration during chronic alcohol intake in pregnant and lactating rats: effects on the offspring neurobehavioral development. Alcohol Alcohol 31:27–40

    PubMed  Google Scholar 

  • Beltramo E, Berrone E, Buttiglier S, Porta M (2004) Thiamine and benfotiamine prevent increased apoptosis in endothelial cells and pericytes cultured in high glucose. Diabetes Metab Res Rev 20:330–336. doi:10.1002/dmrr.470

    Article  PubMed  CAS  Google Scholar 

  • Bergquist JE, Hanson M (1983) Axonal transport of thiamine in frog sciatic nerves. Exp Neurol 79:622–629. doi:10.1016/0014-4886(83)90027-4

    Article  PubMed  CAS  Google Scholar 

  • Bettendorff L, Michel-Cahay C, Grandfils C, De Rycker C, Schoffeniels E (1987) Thiamine triphosphate and membrane-associated thiamine phosphatases in the electric organ of Electrophorus electricus. J Neurochem 49:495–502. doi:10.1111/j.1471-4159.1987.tb02891.x

    Article  PubMed  CAS  Google Scholar 

  • Bettendorff L, Peeters M, Jouan C, Wins P, Schoffeniels E (1991) Determination of thiamin and its phosphate esters in cultured neurons and astrocytes using an ion-pair reversed-phase high-performance liquid chromatographic method. Anal Biochem 198:52–59. doi:10.1016/0003-2697(91)90505-N

    Article  PubMed  CAS  Google Scholar 

  • Böhmer BM, Roth-Maier DA (2007) Effects of high-level dietary B-vitamins on performance, body composition and tissue vitamin contents of growing/finishing pigs. J Anim Physiol Anim Nutr (Berl) 91:6–10. doi:10.1111/j.1439-0396.2006.00635.x

    Article  CAS  Google Scholar 

  • Brown DR (2005) Neurodegeneration and oxidative stress: Prion disease results from loss of antioxidant defence. Folia Neuropathol 43:229–243

    PubMed  CAS  Google Scholar 

  • Bubber P, Ke Z-J, Gibson GE (2004) Tricarboxylic acid cycle enzymes following thiamine deficiency. Neurochem Int 45:1021–1028. doi:10.1016/j.neuint.2004.05.007

    Article  PubMed  CAS  Google Scholar 

  • Bucci M, Murphy CR (1999) Differential alterations in the distribution of three phosphatase enzymes during the plasma membrane transformation of uterine epithelial cells in the rat. Cell Biol Int 23:21–30. doi:10.1006/cbir.1998.0317

    Article  PubMed  CAS  Google Scholar 

  • Butterworth RF (1987) Thiamine malnutrition and brain development. In: Current topics in nutrition and disease, vol 16. Basic and clinical aspects of nutrition and brain development. Alan R. Liss Inc., New York

  • Butterworth RF (1989) Effects of thiamine deficiency on brain metabolism: implications for the pathogenesis of the Wernicke-Korsakoff syndrome. Alcohol Alcohol 24:271–279

    PubMed  CAS  Google Scholar 

  • Chornyy S, Parkhomenko J, Chorna N (2007) Thiamine deficiency caused by thiamine antagonists triggers upregulation of apoptosis inducing factor gene expression and leads to caspase 3-mediated apoptosis in neuronally differentiated rat PC-12 cells. Acta Biochim Pol 54:315–322

    PubMed  CAS  Google Scholar 

  • Claus D, Eggers R, Warecka K, Neundörfer B (1985) Thiamine deficiency and nervous system function disturbances. Eur Arch Psychiatry Neurol Sci 234:390–394. doi:10.1007/BF00386056

    Article  PubMed  CAS  Google Scholar 

  • Czerniecki J, Chanas G, Verlaet M, Bettendorff L, Makarchikov AF, Leprince P et al (2004) Neuronal localization of the 25-kDa specific thiamine triphosphatase in rodent brain. Neuroscience 125:833–840. doi:10.1016/j.neuroscience.2004.02.033

    Article  PubMed  CAS  Google Scholar 

  • Donnino MW, Vega J, Miller J, Walsh M (2007) Myths and misconceptions of Wernicke’s encephalopathy: what every emergency physician should know. Ann Emerg Med 50:715–721. doi:10.1016/j.annemergmed.2007.02.007

    Article  PubMed  Google Scholar 

  • Fraccascia P, Sniekers M, Casteels M, Van Veldhoven PP (2007) Presence of thiamine pyrophosphate in mammalian peroxisomes. BMC Biochem 8:10. doi:10.1186/1471-2091-8-10

    Article  PubMed  CAS  Google Scholar 

  • Frank RA, Kay CW, Hirst J, Luisi BF (2008) Off-pathway, oxygen-dependent thiamine radical in the Krebs cycle. J Am Chem Soc 130:1662–1668. doi:10.1021/ja076468k

    Article  PubMed  CAS  Google Scholar 

  • Gibson GE, Blass JP (2007) Thiamine-dependent processes and treatment strategies in neurodegeneration. Antioxid Redox Signal 9:1605–1619. doi:10.1089/ars.2007.1766

    Article  PubMed  CAS  Google Scholar 

  • Gibson GE, Zhang H (2002) Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochem Int 40:493–504. doi:10.1016/S0197-0186(01)00120-6

    Article  PubMed  CAS  Google Scholar 

  • Goldberg DJ, Cooper JR (1975) Effects of thiamine antagonists on nerve conduction I. Actions of antimetabolites and fern extract on propagated action potentials. J Neurobiol 6:435–452. doi:10.1002/neu.480060502

    CAS  Google Scholar 

  • Goldberg DJ, Begenisich TB, Cooper JR (2004) Effects of thiamine antagonists on nerve conduction. II. Voltage clamp experiments with antimetabolites. J Neurobiol 6:453–462. doi:10.1002/neu.480060503

    Article  Google Scholar 

  • Ianchii OR, Parkhomenko IuM, Donchenko GV (2003) Intracellular localization of thiamine-binding proteins in the liver and kidneys of rats. Ukr Biokhim 75:111–114

    CAS  Google Scholar 

  • Ishii K, Sarai K, Sanemori H, Kawasaki T (1979) Concentration of thiamine and its phosphate esters in rat tissues determined by high pressure liquid chromatography. J Nutr Sci Vitaminol (Tokyo) 25:517–523

    CAS  Google Scholar 

  • Itokawa Y, Schultz RA, Cooper JA (1972) Thiamine in nerve membranes. Biochim Biophys Acta 266:293–299. doi:10.1016/0005-2736(72)90144-7

    Article  PubMed  CAS  Google Scholar 

  • Iwata H, Baba A, Matsuda T, Terashita Z, Ishii K (1974) Role of thiamine metabolism in the central nervous system. II. Effects of various agents on thiamine triphosphatase activity in rat brain. Jpn J Pharmacol 24:825–829. doi:10.1254/jjp. 24.825

    Article  PubMed  CAS  Google Scholar 

  • Jones KL, Smith DW (1973) Recognition of the fetal alcohol syndrome in early infancy. Lancet 2:999–1001. doi:10.1016/S0140-6736(73)91092-1

    Article  PubMed  CAS  Google Scholar 

  • Karuppagounder SS, Shi Q, Xu H, Gibson GE (2007) Changes in inflammatory processes associated with selective vulnerability following mild impairment of oxidative metabolism. Neurobiol Dis 26:353–362. doi:10.1016/j.nbd.2007.01.011

    Article  PubMed  CAS  Google Scholar 

  • Karuppagounder SS, Xu H, Pechman D, Chen LH, Degiorgio LA, Gibson GE (2008) Translocation of amyloid precursor protein C-terminal fragment(s) to the nucleus precedes neuronal death due to thiamine deficiency-induced mild impairment of oxidative metabolism. Neurochem Res 33:1365–1372

    Article  PubMed  CAS  Google Scholar 

  • Ke ZJ, Gibson GE (2004) Selective response of various brain cell types during neurodegeneration induced by mild impairment of oxidative metabolism. Neurochem Int 45:361–369. doi:10.1016/j.neuint.2003.09.008

    Article  PubMed  CAS  Google Scholar 

  • Kerr JFR, Winterford CM, Harmon BV (1994) Morphological criteria for identifying apoptosis. Cell biology: a laboratoryhandbook. Academic Press Inc, pp 319–329

  • Lindhurst MJ, Fiermonte G, Song S, Struys E, De Leonardis F, Schwartzberg PL et al (2006) Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS malformations, and anemia. Proc Natl Acad Sci USA 103:15927–15932. doi:10.1073/pnas.0607661103

    Article  PubMed  CAS  Google Scholar 

  • Mancuso C, Scapagini G, Currò D, Giuffrida Stella AM, De Marco C, Butterfield DA et al (2007) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:1107–1123. doi:10.2741/2130

    Article  PubMed  CAS  Google Scholar 

  • Makarchikov AF, Lakaye B, Gulyai IE, Czerniecki J, Coumans B, Wins P et al (2003) Thiamine triphosphate and thiamine triphosphatase activities: from bacteria to mammals. Cell Mol Life Sci 60:1477–1488. doi:10.1007/s00018-003-3098-4

    Article  PubMed  CAS  Google Scholar 

  • Martin P, Singleton CK, Hiller-Sturmhöfel S (2003) The role of thiamine deficiency in alcoholic brain disease. Alcohol Res Health 27:174–181

    Google Scholar 

  • Matsuda T, Cooper JR (1981) Thiamine as an integral component of brain synaptosomal membranes. Proc Natl Acad Sci USA 78:5886–5889. doi:10.1073/pnas.78.9.5886

    Article  PubMed  CAS  Google Scholar 

  • Matsuda T, Doi T, Tonomura H, Baba A, Iwata H (1989) Postnatal development of thiamine metabolism in rat brain. J Neurochem 52:842–846. doi:10.1111/j.1471-4159.1989.tb02530.x

    Article  PubMed  CAS  Google Scholar 

  • Mulholland PJ, Self RL, Stepanyan TD, Little HJ, Littleton JM, Prendergast MA (2005) Thiamine deficiency in the pathogenesis of chronic ethanol-associated cerebellar damage in vitro. Neuroscience 135:1129–1139. doi:10.1016/j.neuroscience.2005.06.077

    Article  PubMed  CAS  Google Scholar 

  • Navarro D, Zwingmann C, Hazell AS, Butterworth RF (2005) Brain lactate synthesis in thiamine deficiency: a re-evaluation using 1H–13C nuclear magnetic resonance spectroscopy. J Neurosci Res 79:33–41. doi:10.1002/jnr.20290

    Article  PubMed  CAS  Google Scholar 

  • Oliveira FA, Galan DT, Ribeiro AM, Santos Cruz J (2007) Thiamine deficiency during pregnancy leads to cerebellar neuronal death in rat offspring: role of voltage-dependent K+ channels. Brain Res 1134:79–86. doi:10.1016/j.brainres.2006.11.064

    Article  PubMed  CAS  Google Scholar 

  • Pomero F, Molinar Min A, La Selva M, Allione A, Molinatti GM, Porta M (2001) Benfotiamine is similar to thiamine in correcting endothelial cell defects induced by high glucose. Acta Diabetol 38:135–138. doi:10.1007/s005920170010

    Article  PubMed  CAS  Google Scholar 

  • Rao J, Oz G, Seaquist ER (2006) Regulation of cerebral glucose metabolism. Minerva Endocrinol 31:149–158

    PubMed  CAS  Google Scholar 

  • Reddy TS, Ramakrishnan CV (1982) Effects of maternal thiamine deficiency on the lipid composition of rat whole brain, gray matter and white matter. Neurochem Int 4:495–499. doi:10.1016/0197-0186(82)90038-9

    Article  CAS  Google Scholar 

  • Rœcklin B, Levin SW, Comly M, Mukherjee AB (1985) Intrauterine growth retardation induced by thiamine deficiency and pyrithiamine during pregnancy in the rat. Am J Obstet Gynecol 151:455–460

    Google Scholar 

  • Schmid U, Stopper H, Heidland A, Schupp N (2008) Benfotiamine exhibits direct antioxidative capacity and prevents induction of DNA damage in vitro. Diabetes Metab Res Rev 24:371–377

    Article  PubMed  CAS  Google Scholar 

  • Siebert G, Gessner B, Klasser M (1986) Energy supply of the central nervous system. In: Somogyi JC, Hotzel D (eds) Nutrition and neurobiology. Karger, Basel, pp 1–26

    Google Scholar 

  • Siegel G, Agranoff B, Albers RW, Molinoff P (1989) Basic neurochemistry, 4th edn. Raven Press, New York

    Google Scholar 

  • Sniekers M, Foulon V, Mannaerts GP, Van Maldergem L, Mandel H, Gelb BD et al (2006) Thiamine pyrophosphate: an essential cofactor for the alpha-oxidation in mammals—implications for thiamine deficiencies? Cell Mol Life Sci 63:1553–1563. doi:10.1007/s00018-005-5603-4

    Article  PubMed  CAS  Google Scholar 

  • Spector R, Johanson CE (2007) Vitamin transport and homeostasis in mammalian brain: focus on Vitamins B and E. J Neurochem 103:425–438. doi:10.1111/j.1471-4159.2007.04773.x

    Article  PubMed  CAS  Google Scholar 

  • Stahly TS, Williams NH, Lutz TR, Ewan RC, Swenson SG (2007) Dietary B vitamin needs of strains of pigs with high and moderate lean growth. J Anim Sci 85:188–195. doi:10.2527/jas.2006-086

    Article  PubMed  CAS  Google Scholar 

  • Stirban A, Negrean M, Stratmann B, Gawlowski T, Horstmann T, Götting C et al (2006) Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes. Diab Care 29:2064–2071. doi:10.2337/dc06-0531

    Article  CAS  Google Scholar 

  • Szyniarowski P, Lakaye B, Czerniecki J, Makarchikov AF, Wins P, Margineanu I et al (2005) Pig tissues express a catalytically inefficient 25-kDa thiamine triphosphatase: insight in the catalytic mechanisms of this enzyme. Biochim Biophys Acta 1725:93–102

    PubMed  CAS  Google Scholar 

  • Tallaksen CM, Tauboll E (2000) Excitatory effect of thiamine on CA1 pyramidal neurones in rat hippocampal slices in vitro. Eur J Neurol 7:693–698. doi:10.1046/j.1468-1331.2000.00132.x

    Article  PubMed  CAS  Google Scholar 

  • Tanaka C, Cooper JR (1968) The fluorescent microscopic localization of thiamine in nervous tissue. J Histochem Cytochem 16:362–365

    PubMed  CAS  Google Scholar 

  • Tanaka C, Itokawa Y, Tanaka S (1973) The axoplasmic transport of thiamine in rat sciatic nerve. J Histochem Cytochem 21:81–86

    PubMed  CAS  Google Scholar 

  • Trostler N, Guggenheim K, Havivi E, Sklan D (1977) Effect of thiamine deficiency in pregnant and lactating rats on the brain of their offspring. Nutr Metab 21:294–30

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. doi:10.1016/j.biocel.2006.07.001

    Article  PubMed  CAS  Google Scholar 

  • Wang JJ-L, Hua Z, Fentress HM, Singleton CK (2000) JNK1 is inactivated during thiamine deficiency-induced apoptosis in human neuroblastoma cells. J Nutr Biochem 11:208–215. doi:10.1016/S0955-2863(00)00067-X

    Article  PubMed  CAS  Google Scholar 

  • Wenisch S, Steinmetz T, Fortmann B, Leiser R, Bitsch I (1996) Can megadoses of thiamine prevent ethanol-induced damages of rat hippocampal CA1 pyramidal neurones? Z Ernahrungswiss 35:266–272. doi:10.1007/BF01625691

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Ren J (2006) Benfotiamine alleviates diabetes-induced cerebral oxidative damage independent of advanced glycation end-product, tissue factor and TNF-alpha. Neurosci Lett 394:158–162. doi:10.1016/j.neulet.2005.10.022

    Article  PubMed  CAS  Google Scholar 

  • Zakeri Z, Lockshin RA (2008) Cell death: history and future. Adv Exp Med Biol 615:1–11

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdoulaye Bâ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bâ, A. Metabolic and Structural Role of Thiamine in Nervous Tissues. Cell Mol Neurobiol 28, 923–931 (2008). https://doi.org/10.1007/s10571-008-9297-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-008-9297-7

Keywords

Navigation