Skip to main content
Log in

Comparison of angiographic and IVUS derived coronary geometric reconstructions for evaluation of the association of hemodynamics with coronary artery disease progression

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Wall shear stress (WSS) has been investigated as a prognostic marker for the prospective identification of rapidly progressing coronary artery disease (CAD) and atherosclerotic lesions likely to gain high-risk (vulnerable) characteristics. The goal of this study was to compare biplane angiographic vs. intravascular ultrasound (IVUS) derived reconstructed coronary geometries to evaluate agreement in geometry, computed WSS, and association of WSS and CAD progression. Baseline and 6-month follow-up angiographic and IVUS imaging data were collected in patients with non-obstructive CAD (n = 5). Three-dimensional (3D) reconstructions of the coronary arteries were generated with each technique, and patient-specific computational fluid dynamics models were constructed to compute baseline WSS values. Geometric comparisons were evaluated in arterial segments (n = 9), and hemodynamic data were evaluated in circumferential sections (n = 468). CAD progression was quantified from serial IVUS imaging data (n = 277), and included virtual-histology IVUS (VH-IVUS) derived changes in plaque composition. There was no significant difference in reconstructed coronary segment lengths and cross-sectional areas (CSA), however, IVUS derived geometries exhibited a significantly larger left main CSA than the angiographic reconstructions. Computed absolute time-averaged WSS (TAWSSABS) values were significantly greater in the IVUS derived geometries, however, evaluations of relative TAWSS (TAWSSREL) values revealed improved agreement and differences within defined zones of equivalence. Associations between VH-IVUS defined CAD progression and angiographic or IVUS derived WSS exhibited poor agreement when examining TAWSSABS data, but improved when evaluating the association with TAWSSREL data. We present data from a small cohort of patients highlighting strong agreement between angiographic and IVUS derived coronary geometries, however, limited agreement is observed between computed WSS values and associations of WSS with CAD progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2015) Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation 131:e29–e322. doi:10.1161/CIR.0000000000000152

    Article  PubMed  Google Scholar 

  2. Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47:C13–C18. doi:10.1016/j.jacc.2005.10.065

    Article  CAS  PubMed  Google Scholar 

  3. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP, Parise H, Templin B, White R, Zhang Z, Serruys PW, Investigators P (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364:226–235. doi:10.1056/NEJMoa1002358

    Article  CAS  PubMed  Google Scholar 

  4. Bourantas CV, Garcia-Garcia HM, Diletti R, Muramatsu T, Serruys PW (2013) Early detection and invasive passivation of future culprit lesions: a future potential or an unrealistic pursuit of chimeras? Am Heart J 165(869–881):e4. doi:10.1016/j.ahj.2013.02.015

    PubMed  Google Scholar 

  5. DeBakey ME, Lawrie GM, Glaeser DH (1985) Patterns of atherosclerosis and their surgical significance. Ann Surg 201:115–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fox B, Seed WA (1981) Location of early atheroma in the human coronary arteries. J Biomech Eng 103:208–212

    Article  CAS  PubMed  Google Scholar 

  7. Friedman MH, Bargeron CB, Deters OJ, Hutchins GM, Mark FF (1987) Correlation between wall shear and intimal thickness at a coronary artery branch. Atherosclerosis 68:27–33

    Article  CAS  PubMed  Google Scholar 

  8. He X, Ku DN (1996) Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng 118:74–82

    Article  CAS  PubMed  Google Scholar 

  9. Samady H, Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Maynard C, Timmins LH, Quyyumi AA, Giddens DP (2011) Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124:779–788. doi:10.1161/CIRCULATIONAHA.111.021824

    Article  CAS  PubMed  Google Scholar 

  10. Stone PH, Saito S, Takahashi S, Makita Y, Nakamura S, Kawasaki T, Takahashi A, Katsuki T, Nakamura S, Namiki A, Hirohata A, Matsumura T, Yamazaki S, Yokoi H, Tanaka S, Otsuji S, Yoshimachi F, Honye J, Harwood D, Reitman M, Coskun AU, Papafaklis MI, Feldman CL, PREDICTION Investigators (2012) Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION study. Circulation 126:172–181. doi:10.1161/CIRCULATIONAHA.112.096438

    Article  PubMed  Google Scholar 

  11. Wahle A, Prause PM, DeJong SC, Sonka M (1999) Geometrically correct 3-d reconstruction of intravascular ultrasound images by fusion with biplane angiography–methods and validation. IEEE Trans Med Imaging 18:686–699. doi:10.1109/42.796282

    Article  CAS  PubMed  Google Scholar 

  12. Krams R, Wentzel JJ, Oomen JA, Vinke R, Schuurbiers JC, de Feyter PJ, Serruys PW, Slager CJ (1997) Evaluation of endothelial shear stress and 3d geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3d reconstruction from angiography and ivus (ANGUS) with computational fluid dynamics. Arterioscler Thromb Vasc Biol 17:2061–2065

    Article  CAS  PubMed  Google Scholar 

  13. Papafaklis MI, Bourantas CV, Yonetsu T, Vergallo R, Kotsia A, Nakatani S, Lakkas LS, Athanasiou LS, Naka KK, Fotiadis DI, Feldman CL, Stone PH, Serruys PW, Jang IK, Michalis LK (2014) Anatomically correct three-dimensional coronary artery reconstruction using frequency domain optical coherence tomographic and angiographic data: head-to-head comparison with intravascular ultrasound for endothelial shear stress assessment in humans. EuroIntervention. doi:10.4244/EIJY14M06_11

    PubMed  Google Scholar 

  14. Vergallo R, Papafaklis MI, Yonetsu T, Bourantas CV, Andreou I, Wang Z, Fujimoto JG, McNulty I, Lee H, Biasucci LM, Crea F, Feldman CL, Michalis LK, Stone PH, Jang IK (2014) Endothelial shear stress and coronary plaque characteristics in humans: Combined frequency-domain optical coherence tomography and computational fluid dynamics study. Circ Cardiovasc Imaging 7:905–911. doi:10.1161/CIRCIMAGING.114.001932

    Article  PubMed  Google Scholar 

  15. Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Timmins LH, Binongo JN, Golub LJ, Corban MT, Finn AV, Oshinski JN, Quyyumi AA, Giddens DP, Samady H (2012) Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease. J Am Heart Assoc 1:e002543. doi:10.1161/JAHA.112.002543

    Article  PubMed  PubMed Central  Google Scholar 

  16. Timmins LH, Gupta D, Corban MT, Molony DS, Oshinski JN, Samady H, Giddens DP (2015) Co-localization of disturbed flow patterns and occlusive cardiac allograft vasculopathy lesion formation in heart transplant patients. Cardiovasc Eng Technol 6:25–35

    Article  PubMed  Google Scholar 

  17. Timmins LH, Molony DS, Eshtehardi P, McDaniel MC, Oshinski JN, Samady H, Giddens DP (2015) Focal association between wall shear stress and clinical coronary artery disease progression. Ann Biomed Eng 43:94–106. doi:10.1007/s10439-014-1155-9

    Article  PubMed  Google Scholar 

  18. Ku DN (1997) Blood flow in arteries. Annu Rev Fluid Mech 29:399–434

    Article  Google Scholar 

  19. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  PubMed  Google Scholar 

  20. Schuurbiers JC, Lopez NG, Ligthart J, Gijsen FJ, Dijkstra J, Serruys PW, Van der Steen AF, Wentzel JJ (2009) In vivo validation of CAAS QCA-3D coronary reconstruction using fusion of angiography and intravascular ultrasound (angus). Catheter Cardiovasc Interv 73:620–626. doi:10.1002/ccd.21872

    Article  PubMed  Google Scholar 

  21. Gradaus R, Mathies K, Breithardt G, Bocker D (2006) Clinical assessment of a new real time 3d quantitative coronary angiography system: evaluation in stented vessel segments. Catheter Cardiovasc Interv 68:44–49. doi:10.1002/ccd.20775

    Article  PubMed  Google Scholar 

  22. Tu S, Huang Z, Koning G, Cui K, Reiber JH (2010) A novel three-dimensional quantitative coronary angiography system: In-vivo comparison with intravascular ultrasound for assessing arterial segment length. Catheter Cardiovasc Interv 76:291–298. doi:10.1002/ccd.22502

    Article  PubMed  Google Scholar 

  23. Sano K, Mintz GS, Carlier SG, de Ribamar Costa J Jr, Qian J, Missel E, Shan S, Franklin-Bond T, Boland P, Weisz G, Moussa I, Dangas GD, Mehran R, Lansky AJ, Kreps EM, Collins MB, Stone GW, Leon MB, Moses JW (2007) Assessing intermediate left main coronary lesions using intravascular ultrasound. Am Heart J 154:983–988. doi:10.1016/j.ahj.2007.07.001

    Article  PubMed  Google Scholar 

  24. Abizaid AS, Mintz GS, Abizaid A, Mehran R, Lansky AJ, Pichard AD, Satler LF, Wu H, Kent KM, Leon MB (1999) One-year follow-up after intravascular ultrasound assessment of moderate left main coronary artery disease in patients with ambiguous angiograms. J Am Coll Cardiol 34:707–715

    Article  CAS  PubMed  Google Scholar 

  25. Toutouzas K, Chatzizisis YS, Riga M, Giannopoulos A, Antoniadis AP, Tu S, Fujino Y, Mitsouras D, Doulaverakis C, Tsampoulatidis I, Koutkias VG, Bouki K, Li Y, Chouvarda I, Cheimariotis G, Maglaveras N, Kompatsiaris I, Nakamura S, Reiber JH, Rybicki F, Karvounis H, Stefanadis C, Tousoulis D, Giannoglou GD (2015) Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3d oct: comparative study to 3d ivus and 3d qca. Atherosclerosis 240:510–519. doi:10.1016/j.atherosclerosis.2015.04.011

    Article  CAS  PubMed  Google Scholar 

  26. van der Giessen AG, Schaap M, Gijsen FJ, Groen HC, van Walsum T, Mollet NR, Dijkstra J, van de Vosse FN, Niessen WJ, de Feyter PJ, van der Steen AF, Wentzel JJ (2010) 3d fusion of intravascular ultrasound and coronary computed tomography for in-vivo wall shear stress analysis: a feasibility study. Int J Cardiovasc Imaging 26:781–796. doi:10.1007/s10554-009-9546-y

    Article  PubMed  Google Scholar 

  27. Gijsen FJ, Schuurbiers JC, van de Giessen AG, Schaap M, van der Steen AF, Wentzel JJ (2014) 3d reconstruction techniques of human coronary bifurcations for shear stress computations. J Biomech 47:39–43. doi:10.1016/j.jbiomech.2013.10.021

    Article  PubMed  Google Scholar 

  28. Gijsen FJ, Wentzel JJ, Thury A, Lamers B, Schuurbiers JC, Serruys PW, van der Steen AF (2007) A new imaging technique to study 3-d plaque and shear stress distribution in human coronary artery bifurcations in vivo. J Biomech 40:2349–2357. doi:10.1016/j.jbiomech.2006.12.007

    Article  PubMed  Google Scholar 

  29. Molony DS, Timmins LH, Hung OY, Rasoul-Arzrumly E, Samady H, Giddens DP (2015) An assessment of intra-patient variability on observed relationships between wall shear stress and plaque progression in coronary arteries. Biomed Eng Online 14(Suppl 1):S2. doi:10.1186/1475-925X-14-S1-S2

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li Y, Gutierrez-Chico JL, Holm NR, Yang W, Hebsgaard L, Christiansen EH, Maeng M, Lassen JF, Yan F, Reiber JH, Tu S (2015) Impact of side branch modeling on computation of endothelial shear stress in coronary artery disease: coronary tree reconstruction by fusion of 3d angiography and oct. J Am Coll Cardiol 66:125–135. doi:10.1016/j.jacc.2015.05.008

    Article  PubMed  Google Scholar 

  31. Morris L, Fahy P, Stefanov F, Finn R (2015) The effects that cardiac motion has on coronary hemodynamics and catheter trackability forces for the treatment of coronary artery disease: An in vitro assessment. Cardiovasc Eng Technol 6:430–449. doi:10.1007/s13239-015-0241-y

    Article  PubMed  Google Scholar 

  32. Thim T, Hagensen MK, Wallace-Bradley D, Granada JF, Kaluza GL, Drouet L, Paaske WP, Botker HE, Falk E (2010) Unreliable assessment of necrotic core by virtual histology intravascular ultrasound in porcine coronary artery disease. Circ Cardiovasc Imaging 3:384–391. doi:10.1161/CIRCIMAGING.109.919357

    Article  PubMed  Google Scholar 

  33. Brown AJ, Obaid DR, Costopoulos C, Parker RA, Calvert PA, Teng Z, Hoole SP, West NE, Goddard M, Bennett MR (2015) Direct comparison of virtual-histology intravascular ultrasound and optical coherence tomography imaging for identification of thin-cap fibroatheroma. Circ Cardiovasc Imaging 8:e003487. doi:10.1161/CIRCIMAGING.115.003487

    PubMed  PubMed Central  Google Scholar 

  34. Nair A, Margolis MP, Kuban BD, Vince DG (2007) Automated coronary plaque characterisation with intravascular ultrasound backscatter: ex vivo validation. EuroIntervention 3:113–120

    PubMed  Google Scholar 

Download references

Funding

This study was funded by Toshiba America Medical Systems, American Heart Association, Wallace H. Coulter Translation Research Program, and the Georgia Research Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas H. Timmins.

Ethics declarations

Conflict of interest

HS and DPG have received research grants from Toshiba America Medical Systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timmins, L.H., Suo, J., Eshtehardi, P. et al. Comparison of angiographic and IVUS derived coronary geometric reconstructions for evaluation of the association of hemodynamics with coronary artery disease progression. Int J Cardiovasc Imaging 32, 1327–1336 (2016). https://doi.org/10.1007/s10554-016-0918-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-016-0918-9

Keywords

Navigation