Skip to main content
Log in

Tapered-slit membrane filters for high-throughput viable circulating tumor cell isolation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper presents tapered-slit membrane filters for high-throughput viable circulating tumor cell (CTC) isolation. The membrane filter with a 2D array of vertical tapered slits with a gap that is wide at the entrance and gradually decreases with depth, provide minimal cell stress and reduce 82.14 % of the stress generated in conventional straight-hole filters. We designed two types of tapered-slit filters, Filters 6 and 8, respectively, containing the tapered slits with outlet widths of 6 μm and 8 μm at a slit density of 34,445/cm2 on the membrane. We fabricated the vertical slits with a tapered angle of 2 ° on a SU8 membrane by adjusting the UV expose dose and the air gap between the membrane and the photomask during lithography. In the experimental study, the proposed tapered-slit filter captured 89.87 % and 82.44 % of the cancer cells spiked in phosphate buffered saline (PBS) and diluted blood (blood: PBS = 1:4), respectively, at a sample flow rate of 5 ml per hour, which is 33.3 times faster than previous lateral tapered-slit filters. We further verified the capability to culture on chip after capturing: 72.33 % of cells among the captured cells still remained viable after a 5-day culture. The proposed tapered-slit membrane filters verified high-throughput viable CTC isolation capability, thereby inaugurating further advanced CTC research for cancer diagnosis and prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • M. Cristofanilli, G.T. Budd, M.J. Ellis, A. Stopeck, J. Matera, M.C. Miller, J.M. Reuben, G.V. Doyle, W.J. Allard, L.W.M.M. Terstappen, D.F. Hayer, New Engl. J. Med. 351, 781–791 (2004)

    Article  Google Scholar 

  • D.F. Hayes, M. Cristofanilli, G.T. Budd, M.J. Ellis, A. Stopeck, M.C. Miller, J. Matera, W.J. Allard, G.V. Doyle, L.W.W.M. Terstappen, Clin. Cancer Res. 12, 4218–4224 (2006)

    Article  Google Scholar 

  • S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Nature 450, 1235–1239 (2007)

    Article  Google Scholar 

  • J.P. Gleghorn, E.D. Pratt, D. Denning, H. Liu, N.H. Bander, S.T. Tagawa, D.M. Nanus, P.A. Giannakakou, B.J. Kirby, Lab Chip 10, 27–29 (2010)

    Article  Google Scholar 

  • Y. Xu, J.A. Philips, J. Yan, Q. Li, Z.H. Fan, W. Tan, Anal. Chem. 81, 7436–7442 (2009)

    Article  Google Scholar 

  • M.K. Baker, K. Mikhitarian, W. Osta, K. Callahan, R. Hoda, F. Brescia, R. Kneuper-Hall, M. Mitas, D.J. Cole, W.E. Gillanders, Clin. Cancer Res. 9, 4865–4871 (2003)

    Google Scholar 

  • T.S. Sim, K. Kwon, J.C. Park, J.G. Lee, H.I. Jung, Lab Chip 11, 93–99 (2011)

    Article  Google Scholar 

  • P.R.C. Gascoyne, J. Noshari, T.J. Anderson, F.F. Becker, Electrophoresis 30, 1388–1398 (2009)

    Article  Google Scholar 

  • S. Zheng, H. Lin, J.Q. Liu, M. Balic, R. Datar, R.J. Cote, Y.C. Tai, J. Chromatogr. A 1162, 154–161 (2007)

    Article  Google Scholar 

  • S. Zheng, H.K. Lin, B. Lu, A. Williams, R. Datar, R.J. Cote, Y.C. Tai, Biomed. Microdevices 13, 203–213 (2011)

    Article  Google Scholar 

  • I. Doh, H.I. Yoo, Y.H. Cho, J. Lee, H.K. Kim, Appl. Phys. Lett. 101, 4 (2012)

    Article  Google Scholar 

  • H. Hertz, J. Math. Crelle’s J. 92, 19 (1881)

    Google Scholar 

  • S. Chien, S. Usami, R.J. Dellenback, M.I. Gregersen, Am. J. Physiol. 219, 136–142 (1970)

    Google Scholar 

  • S. Choi, S. Song, C. Choi, J.K. Park, Lab Chip 7, 1532–1538 (2007)

    Article  Google Scholar 

  • M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki, T. Yoshino, T. Tanaka, T. Matsunaga, Anal. Chem. 82, 6629–6635 (2010)

    Article  Google Scholar 

  • J. Zhang, M.B. Chan-Park, S.R. Conner, Lab Chip 4, 646–653 (2004)

    Article  Google Scholar 

  • C.A. Bichsel, S. Gobaa, S. Kobel, C. Secondini, G.N. Thalmann, M.G. Cecchini, M.P. Lutolf, Lab Chip 12, 2313–2316 (2012)

    Article  Google Scholar 

  • Y. Choi, R. Powers, V. Vemekar, A. B. Frazier, M. Laplaca, and M. G. Allen, in High aspect ratio SU-8 structure for 3D culturing of neurons: Proceeding of ASME International Mechanical Engineering Congress and RD&D Expo, Washington, D.C., USA, 15–21 November 2003, pp 1–4

Download references

Acknowledgments

This research was supported by the Converging Research Center Program funded by the Ministry of Science, ICT and Future Planning (Project No. 2014048778)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Ho Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, YT., Doh, I. & Cho, YH. Tapered-slit membrane filters for high-throughput viable circulating tumor cell isolation. Biomed Microdevices 17, 45 (2015). https://doi.org/10.1007/s10544-015-9949-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-9949-6

Keywords

Navigation