Skip to main content

Advertisement

Log in

Morphological and histological analysis on the in vivo degradation of poly (propylene fumarate)/(calcium sulfate/β-tricalcium phosphate)

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Poly (propylene fumarate)/(Calcium sulfate/β-tricalcium phosphate) (PPF/(CaSO4/β-TCP)) is a kind of biodegradable composite designed for bone tissue engineering. The in vitro degradation behavior of this composite has been investigated in our previous study. The aim of this study was to investigate the effects of PPF molecular weight and CaSO4/β-TCP molar ratio on the in vivo degradation of PPF/(CaSO4/β-TCP) composite and the bone tissue response to PPF/(CaSO4/β-TCP). Total 36 PPF/(CaSO4/β-TCP) composite samples were implanted into 15.0 mm segmental defects in tibiae of 18 Japanese rabbits, harvested at 2, 4 and 8 weeks after the operation, and analyzed using radiographic and histological analysis to assess the in vivo degradation of the composites as well as tissue response to the implants. The in vivo degradation results show that all the samples maintained their original shape. Tissues penetrated into the pores which formed by the degradation of CaSO4/β-TCP spheres near the surface of the composites. The rate of in vivo degradation and pore forming increased with a decrease in PPF molecular weight and an increase in CaSO4/β-TCP molar ratio. No inflammatory reaction was observed after implantation, and the composites are capable of in situ pore forming. In particular, the pore forming rate can be adjusted by varying the composition of the composites. These results may indicate that PPF/(CaSO4/β-TCP) is a promising osteogenic scaffold for its controllable degradation rate and excellent biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Z.-Y. Cai, D.-A. Yang, N. Zhang, C.-G. Ji, L. Zhu, T. Zhang, Poly(propylene fumarate)/(calcium sulphate/[beta]-tricalcium phosphate) composites: Preparation, characterization and in vitro degradation. Acta Biomater. 5, 628–635 (2009)

    Article  Google Scholar 

  • M. Chazono, T. Tanaka, H. Komaki, K. Fujii, Bone formation and bioresorption after implantation of injectable beta-tricalcium phosphate granules-hyaluronate complex in rabbit bone defects. J. Biomed. Mater. Res. A 70A, 542–549 (2004)

    Article  Google Scholar 

  • J. Dong, T. Uemura, Y. Shirasaki, T. Tateishi, Promotion of bone formation using highly pure porous [beta]-TCP combined with bone marrow-derived osteoprogenitor cells. Biomaterials 23, 4493–4502 (2002)

    Article  Google Scholar 

  • E. Fernández, M.D. Vlad, M.M. Gel, J. López, R. Torres, J.V. Cauich, M. Bohner, Modulation of porosity in apatitic cements by the use of [alpha]-tricalcium phosphate–calcium sulphate dihydrate mixtures. Biomaterials 26, 3395–3404 (2005)

    Article  Google Scholar 

  • J.P. Fisher, J.W.M. Vehof, D. Dean, J.P. van der Waerden, T.A. Holland, A.G. Mikos, Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. J. Biomed. Mater. Res. 59, 547–556 (2002)

    Article  Google Scholar 

  • J.P. Fisher, T.A. Holland, D. Dean, A.G. Mikos, Photoinitiated cross-linking of the biodegradable polyester poly(propylene fumarate). Part II. In Vitro Degradation. Biomacromolecules 4, 1335–1342 (2003)

    Article  Google Scholar 

  • A. Haesslein, M.C. Hacker, A.G. Mikos, Effect of macromer molecular weight on in vitro ophthalmic drug release from photo-crosslinked matrices. Acta Biomater. 4, 1–10 (2008)

    Article  Google Scholar 

  • E.L. Hedberg, A. Tang, R.S. Crowther, D.H. Carney, A.G. Mikos, Controlled release of an osteogenic peptide from injectable biodegradable polymeric composites. J. Control. Release 84, 137–150 (2002)

    Article  Google Scholar 

  • E.L. Hedberg, H.C. Kroese-Deutman, C.K. Shih, R.S. Crowther, D.H. Carney, A.G. Mikos, Effect of varied release kinetics of the osteogenic thrombin peptide TP508 from biodegradable, polymeric scaffolds on bone formation in vivo. J. Biomed. Mater. Res. A 72A, 343–353 (2005a)

    Article  Google Scholar 

  • E.L. Hedberg, H.C. Kroese-Deutman, C.K. Shih, E.L. Hedberg, H.C. Kroese-Deutman, C.K. Shih, R.S. Crowther, D.H. Carney, A.G. Mikos, In vivo degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds. Biomaterials 26, 4616–4623 (2005b)

    Article  Google Scholar 

  • E.L. Hedberg, C.K. Shih, J.J. Lemoine, M.D. Timmer, M.A.K. Liebschner, J.A. Jansen, A.G. Mikos, In vitro degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds. Biomaterials 26, 3215–3225 (2005c)

    Article  Google Scholar 

  • T.A. Hoang, H.M. Ang, A.L. Rohl, Effects of temperature on the scaling of calcium sulphate in pipes. Powder Technol. 179, 31–37 (2007)

    Article  Google Scholar 

  • G. Hu, L. Xiao, H. Fu, D. Bi, H. Ma, P. Tong, Degradable and bioactive scaffold of calcium phosphate and calcium sulphate from self-setting cement for bone regeneration. J. Porous Mater. 17, 605–613 (2010)

    Article  Google Scholar 

  • M. Jarcho, Calcium phosphate ceramics as hard tissue prosthetics. Clin. Orthop. Relat. Res. 157, 259–278 (1981)

    Google Scholar 

  • D.H.R. Kempen, L. Lu, T.E. Hefferan, L.B. Creemers, A. Maran, K.L. Claccic, Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering. Biomaterials 29, 3245–3252 (2008)

    Article  Google Scholar 

  • G.B. Kharas, M. Kamenetsky, J. Simantirakis, K.C. Beinlich, A.M.T. Rizzo, G.A. Caywood, K. Watson, Synthesis and characterization of fumarate-based polyesters for use in bioresorbable bone cement composites. J. Appl. Polym. Sci. 66, 1123–1137 (1997)

    Article  Google Scholar 

  • N. Kondo, A. Ogose, K. Tokunaga, T. Ito, K. Arai, N. Kudo, Bone formation and resorption of highly purified [beta]-tricalcium phosphate in the rat femoral condyle. Biomaterials 26, 5600–5608 (2005)

    Article  Google Scholar 

  • K.-W. Lee, S. Wang, L. Lu, E. Jabbari, B.L. Currier, M.J. Yaszemski, Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding. Tissue Eng. 12, 2801–2811 (2006)

    Article  Google Scholar 

  • K.-W. Lee, S. Wang, B.C. Fox, E.L. Ritman, M.J. Yaszemski, L. Lu, Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: Effects of resin formulations and laser parameters. Biomacromolecules 8, 1077–1084 (2007)

    Article  Google Scholar 

  • K.-W. Lee, S. Wang, M.J. Yaszemski, L. Lu, Physical properties and cellular responses to crosslinkable poly(propylene fumarate)/hydroxyapatite nanocomposites. Biomaterials 29, 2839–2848 (2008)

    Article  Google Scholar 

  • J.X. Lu, A. Gallur, B. Flautre, K. Anselme, M. Descamps, B. Thierry, Hardouin, Comparative study of tissue reactions to calcium phosphate ceramics among cancellous, cortical, and medullar bone sites in rabbits. J. Biomed. Mater. Res. 42, 357–367 (1998)

    Article  Google Scholar 

  • M. Nilsson, E. Fernández, S. Sarda, L. Lidgren, J.A. Planell, Microstructure analysis of novel resorbable calcium phosphate/sulphate bone cements. Key Eng. Mater. 218–220, 365–368 (2002)

    Article  Google Scholar 

  • R.G. Payne, J.S. McGonigle, M.J. Yaszemski, A.W. Yasko, A.G. Mikos, Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials 23, 4381–4387 (2002)

    Article  Google Scholar 

  • S.J. Peter, M.S. Nolley, J.E. Widmer, M.J. Merwin, M.J. Yaszemski, A.W. Yasko, P.S. Engel, A.G. Mikos, In vitro degradation of a poly(Propylene Fumarate)/beta-Tricalcium phosphate Composite orthopaedic scaffold. Tissue Eng. 3, 207–215 (1997)

    Article  Google Scholar 

  • S.J. Peter, S.T. Miller, G.M. Zhu, A.W. Yasko, A.G. Mikos, In vivo degradation of a poly(propylene fumarate) beta-tricalcium phosphate injectable composite scaffold, pp. 1–7, San Diego, California (1998).

  • S.J. Peter, L.C. Lu, D.J. Kim, A.G. Mikos, Marrow stromal osteoblast function on a poly(propylene fumarate)/beta-tricalcium phosphate biodegradable orthopaedic composite. Biomaterials 21, 1207–1213 (2000)

    Article  Google Scholar 

  • W. Renooij, H.A. Hoogendoorn, W.J. Visser, R.H. Lentferink, M.G. Schmitz, H. Van Leperen, Bioresorption of ceramic Strontium-85-Labeled calcium phosphate implants in dog femora: A pilot study to quantitate bioresorption of ceramic implants of hydroxyapatite and tricalcium orthophosphate in vivo. Clin. Orthop. Relat. Res. 197, 272–285 (1985)

    Google Scholar 

  • R. Smith, C. Oliver, D.F. Williams, The enzymatic degradation of polymers in vitro. J. Biomed. Mater. Res. 21, 991–1003 (1987)

    Article  Google Scholar 

  • M.D. Timmer, C.G. Ambrose, A.G. Mikos, In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate. Biomaterials 24, 571–577 (2003)

    Article  Google Scholar 

  • J.P. Vacanti, R. Langer, Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354(Suppl. I), 32–34 (1999)

    Article  Google Scholar 

  • J.W. Vehof, J.P. Fisher, D. Dean, J.P. van der Waerden, P.H. Spauwen, A.G. Mikos, J.A. Jansen, Bone formation in transforming growth factor beta-1-coated porous poly(propylene fumarate) scaffolds. J. Biomed. Mater. Res. 60, 241–251 (2002)

    Article  Google Scholar 

  • S. Wang, L. Lu, M.J. Yaszemski, Bone-Tissue-Engineering material poly(propylene fumarate): Correlation between molecular weight, chain dimensions, and physical properties. Biomacromolecules 7, 1976–1982 (2006)

    Article  Google Scholar 

  • D.F. Williams, Mechanisms of biodegradation of implantable polymers. Clin. Mater. 10, 9–12 (1992)

    Article  Google Scholar 

  • Z. Yang, D.A. Yang, H. Zhao, Degradation behavior of calcium sulfate/beta-tricalcium phosphate composites in Tris. Key Eng. Mater. 336–338, 1635–1637 (2007)

    Article  Google Scholar 

  • M.J. Yaszemski, R.G. Payne, W.C. Hayes, R.S. Langer, T.B. Aufdemorte, A.G. Mikos, The ingrowth of new bone tissue and initial mechanical properties of a degrading polymeric composite scaffold. Tissue Eng. 1, 41–52 (1995)

    Article  Google Scholar 

  • M.J. Yaszemski, R.G. Payne, W.C. Hayes, R. Langer, A.G. Mikos, In vitro degradation of a poly(propylene fumarate)-based composite material. Biomaterials 17, 2127–2130 (1996a)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from National Natural Science Research Foundation under grant number 50273026 and Tianjin Natural Science Research Foundation under grant number 043803511 and 10JCYBJC10900. We would also like to thank Dr. Li Zhaoyang from The University of Hong Kong for his great help of histological analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-An Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Z., Zhang, T., Di, L. et al. Morphological and histological analysis on the in vivo degradation of poly (propylene fumarate)/(calcium sulfate/β-tricalcium phosphate). Biomed Microdevices 13, 623–631 (2011). https://doi.org/10.1007/s10544-011-9532-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9532-8

Keywords

Navigation