Skip to main content
Log in

Recombinant production of native human α-1-antitrypsin protein in the liver HepG2 cells

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

Alpha-1 antitrypsin (A1AT) deficiency is associated with emphysema and liver disease. Only plasma-derived A1AT protein is available for augmentation therapy. Recombinant A1AT (recA1AT) protein expressed in various types of available hosts are either non-glycosylated or aberrantly glycosylated resulting into reduced stability and biological activity. To overcome these limitations, we have used the human liver HepG2 cell line to produce recA1AT protein.

Results

HepG2 cells were transfected by A1AT cDNA and cell populations were generated that stably overexpressed A1AT protein. Real-time RT-PCR and rocket immunoelectrophoresis of cell culture supernatants indicated that the transfection resulted more than two-fold increase in A1AT production compared to that of control parental cells. Immunoblot analysis showed that both plasma and HepG2-produced A1AT proteins have identical molecular weight in either glycosylated or deglycosylated form. Partial digestion with PNGase F indicated that the three N-glycosylation sites of recA1AT, like the native A1AT protein in plasma, are occupied. Recombinant A1AT also like the native A1AT was thermostable and could efficiently inhibit trypsin proteolytic activity against BSA and BAPNA chromogenic substrate. The recombinant HepG2 cells cultured in media containing B27 serum free supplement released recA1AT at the same level as in the serum containing media.

Conclusions

RecA1AT production in HepG2 cells grown under serum free condition at a large scale could provide a reliable source of the native protein suitable for therapeutic use in human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal S, Singh R, Sanyal I, Amla DV (2008) Expression of modified gene encoding functional human alpha-1-antitrypsin protein in transgenic tomato plants. Transgenic Res 17:881–896

    Article  CAS  PubMed  Google Scholar 

  • Bischoff R, Speck D, Lepage P, Delatre L, Ledoux C, Brown SW, Roitsch C (1991) Purification and biochemical characterization of recombinant alpha 1-antitrypsin variants expressed in Escherichia coli. Biochemistry 30:3464–3472

    Article  CAS  PubMed  Google Scholar 

  • Blanchard V, Liu X, Eigel S, Kaup M, Rieck S, Janciauskiene S, Sandig V, Marx U, Walden P, Tauber R, Berger M (2011) N-glycosylation and biological activity of recombinant human alpha1-antitrypsin expressed in a novel human neuronal cell line. Biotechnol Bioeng 108:2118–2128

    Article  CAS  PubMed  Google Scholar 

  • Campos-da-Paz M, Costa CS, Quilici LS, de Carmo Simões I, Kyaw CM, Maranhão AQ, Brigido MM (2008) Production of recombinant human factor VIII in different cell lines and the effect of human XBP1 co-expression. Mol Biotechnol 39:155–158

    Article  CAS  PubMed  Google Scholar 

  • Castilho A, Windwarder M, Gattinger P, Mach L, Strasser R, Altmann F, Steinkellner H (2014) Proteolytic and N-glycan processing of human α1-antitrypsin expressed in Nicotiana benthamiana. Plant Physiol 166:1839–1851

    Article  PubMed  PubMed Central  Google Scholar 

  • Dietz AA, Rubinstein HM, Hodges LK (1976) Use of alpha-N-benzoyl-l-arginine-p-nitroanilide as trypsin substrate in estimation of alpha 1-antitrypsin. Clin Chem 22:1754–1755

    CAS  PubMed  Google Scholar 

  • Ekeowa UI, Gooptu B, Belorgey D, Hägglöf P, Karlsson-Li S, Miranda E, Pérez J, MacLeod I, Kroger H, Marciniak SJ, Crowther DC, Lomas DA (2009) Alpha1-antitrypsin deficiency, chronic obstructive pulmonary disease and the serpinopathies. Clin Sci (Lond) 116:837–850

    Article  CAS  Google Scholar 

  • Garver RI Jr, Chytil A, Courtney M, Crystal RG (1987) Clonal gene therapy: transplanted mouse fibroblast clones express human alpha 1-antitrypsin gene in vivo. Science 237:762–764

    Article  CAS  PubMed  Google Scholar 

  • Ghouse R, Chu A, Wang Y, Perlmutter DH (2014) Mysteries of α1-antitrypsin deficiency: emerging therapeutic strategies for a challenging disease. Dis Model Mech 7:411–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon EM, Tang H, Salazar RL, Kohn DB (1993) Expression of coagulation factor IX (Christmas factor) in human hepatoma (HepG2) cell cultures after retroviral vector-mediated transfer. Am J Pediatr Hematol Oncol 15:196–203

    Article  CAS  PubMed  Google Scholar 

  • Guzdek A, Potempa J, Dubin A, Travis J (1990) Comparative properties of human alpha-1-proteinase inhibitor glycosylation variants. FEBS Lett 272:125–127

    Article  CAS  PubMed  Google Scholar 

  • Hang GD, Chen CJ, Lin CY, Chen HC, Chen H (2003) Improvement of glycosylation in insect cells with mammalian glycosyltransferases. J Biotechnol 102:61–71

    Article  PubMed  Google Scholar 

  • Kalsheker N (1989) Alpha 1-antitrypsin: structure, function and molecular biology of the gene. Biosci Rep 9:129–138

    Article  CAS  PubMed  Google Scholar 

  • Karnaukhova E, Ophir Y, Golding B (2006) Recombinant human alpha-1 proteinase inhibitor: towards therapeutic use. Amino Acids 30:317–332

    Article  CAS  PubMed  Google Scholar 

  • Kataoka H, Seguchi K, Inoue T, Koono M (1993) Properties of alpha 1-antitrypsin secreted by human adenocarcinoma cell lines. FEBS Lett 328:291–295

    Article  CAS  PubMed  Google Scholar 

  • Kwon KS, Song M, Yu MH (1995) Purification and characterization of alpha 1-antitrypsin secreted by recombinant yeast Saccharomyces diastaticus. J Biotechnol 42:191–195

    Article  CAS  PubMed  Google Scholar 

  • Laurell CB (1966) Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal Biochem 15:45–52

    Article  CAS  PubMed  Google Scholar 

  • Lee KJ, Lee SM, Gil JY, Kwon O, Kim JY, Park SJ, Chung HS, Oh DB (2013) N-glycan analysis of human α1-antitrypsin produced in Chinese hamster ovary cells. Glycoconj J 30:537–547

    Article  CAS  PubMed  Google Scholar 

  • McCarthy C, Saldova R, Wormald MR, Rudd PM, McElvaney NG, Reeves EP (2014) The role and importance of glycosylation of acute phase proteins with focus on alpha-1antitrypsin in acute and chronic inflammatory conditions. J Proteom Res 13:3131–3143

    Article  CAS  Google Scholar 

  • Naghibalhossaini F, Pakdel A, Ghaderi AA, Saberi Firoozi M (2005) Effective production of carcinoembryonic antigen by conversion of the membrane-bound into a recombinant secretory protein by site-specific mutagenesis. Pathol Oncol Res 11:211–217

    Article  CAS  PubMed  Google Scholar 

  • Pakdel A, Naghibalhossaini F, Mokarram P, Jaberipour M, Hosseini A (2012) Regulation of carcinoembryonic antigen release from colorectal cancer cells. Mol Biol Rep 39:3695–3704

    Article  CAS  PubMed  Google Scholar 

  • Ross D, Brown T, Harper R, Pamarthi M, Nixon J, Bromirski J, Li CM, Ghali R, Xie H, Medvedeff G, Li H, Scuderi P, Arora V, Hunt J, Barnett T (2012) Production and characterization of a novel human recombinant alpha-1-antitrypsin in PER.C6 cells. J Biotechnol 162:262–273

    Article  CAS  PubMed  Google Scholar 

  • Schuetz EG, Schuetz JD, Strom SC, Thompson MT, Fisher RA, Molowa DT, Li D, Guzelian PS (1993) Regulation of human liver cytochromes P-450 in family 3A in primary and continuous culture of human hepatocytes. Hepatology 18:1254–1262

    Article  CAS  PubMed  Google Scholar 

  • Stevens JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, Zaya MJ (2003) Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther 307:573–582

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Hilder TL, van der Drift K, Sloan J, Wee K (2013) Structural characterization of recombinant alpha-1-antitrypsin expressed in a human cell line. Anal Biochem 437:20–28

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was a part of the dissertation of Hajar Jaberie, submitted to Shiraz University of Medical Sciences in partial fulfillment of the requirements for the Ph. D in clinical biochemistry. This work was supported by a grant from the Vice Chancellor for Research, Shiraz University of Medical Sciences (Grant Number 92-6699).

Supporting information

Supplementary Table 1—Primers’ sequence used for the related RT-PCR reactions.

Supplementary Fig. 1—The 1257 base pair full length A1AT RT-PCR product (panel A, lane 1) was cloned into pcDNA3.1 expression vector. The presence of the insert was confirmed by digestion of pcDNA3.1-A1AT construct with HindIII/EcoRI restriction enzymes (panel B, lane 2). M: DNA size marker

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhraddin Naghibalhossaini.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

10529_2016_2150_MOESM2_ESM.tif

Supplementary material 2 (TIFF 202 kb) Supplementary Fig. 1. The1257 base pair full length A1AT RT-PCR product (panel A, lane 1) cloned into pcDNA3.1 expression vector. The presence of the insert was confirmed by digestion of pcDNA3.1-A1AT construct with HindIII/EcoRI restriction enzymes (panel B, lane 2). M: DNA size marker

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaberie, H., Naghibalhossaini, F. Recombinant production of native human α-1-antitrypsin protein in the liver HepG2 cells. Biotechnol Lett 38, 1683–1690 (2016). https://doi.org/10.1007/s10529-016-2150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2150-z

Keywords

Navigation