Skip to main content

Advertisement

Log in

Association of SHMT1, MAZ, ERG, and L3MBTL3 Gene Polymorphisms with Susceptibility to Multiple Sclerosis

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is the most common inflammatory and chronic disease of the central nervous system (CNS). A complex interaction between genetic, environmental, and epigenetic factors is involved in the pathogenesis of MS. With the advancement of GWAS, various variants associated with MS have been identified. This study aimed to evaluate the association of single-nucleotide polymorphisms (SNPs) rs4925166 and rs1979277 in the SHMT1, MAZ rs34286592, ERG rs2836425, and L3MBTL3 rs4364506 with MS. In this case–control study, the association of five SNPs in SHMT1, MAZ, ERG, and L3MBTL3 genes with relapsing–remitting MS (RR-MS) was investigated in 190 patients and 200 healthy individuals. Four SNPs including SHMT1 rs4925166, SHMT1 rs1979277, MAZ rs34286592, and L3MBTL3 rs4364506 were genotyped using PCR–RFLP and genotyping of ERG rs2836425 was performed by tetra-primer ARMS PCR. Our findings showed a significant difference in the allelic frequencies for the four SNPs of SHMT1 rs4925166, SHMT1 rs1979277, MAZ rs34286592, and ERG rs2836425, while there were no differences in the allele and genotype frequencies for L3MBTL3 rs4364506. These significant associations were observed for the following genotypes: TT and GG genotypes of SHMT1 rs4925166 (OR 0.47 and 1.90, respectively) genotype GG of SHMT1 rs1979277 (OR 0.63), genotype GG of MAZ rs34286592 (OR 0.61), TC and CC genotypes of ERG rs2836425 (OR 1.89 and 0.50, respectively). Our study highlighted that people who are carrying genotypes including GG (SHMT1 rs4925166) and TC (ERG rs2836425) have the highest susceptibility chance for MS, respectively. However, genotypes TT (SHMT1 rs4925166), CC (ERG rs2836425), GG (MAZ rs34286592), and GG (SHMT1 rs1979277) had the highest negative association (protective effect) with MS, respectively. L3MBTL3 rs4364506 was found neither as a predisposing nor a protective variant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdollah Zadeh R, Jalilian N, Sahraian MA, Kasraian Z, Noori-Daloii MR (2017) Polymorphisms of RPS6K B1 and CD86 associates with susceptibility to multiple sclerosis in Iranian population. Neurol Res 39:217–222

    Article  CAS  PubMed  Google Scholar 

  • Abdollahzadeh R, Fard MS, Rahmani F, Moloudi K, Azarnezhad A (2016) Predisposing role of vitamin D receptor (VDR) polymorphisms in the development of multiple sclerosis: a case-control study. J Neurol Sci 367:148–151

    Article  CAS  PubMed  Google Scholar 

  • Abdollahzadeh R, Moradi Pordanjani P, Rahmani F, Mashayekhi F, Azarnezhad A, Mansoori Y (2018) Association of VDR gene polymorphisms with risk of relapsing-remitting multiple sclerosis in an Iranian Kurdish population. Int J Neurosci 128:505–511

    Article  CAS  PubMed  Google Scholar 

  • Anderson DD, Stover PJ (2009) SHMT1 and SHMT2 are functionally redundant in nuclear de novo thymidylate biosynthesis. PLoS ONE 4:e5839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andlauer TF et al (2016) Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation. Sci Adv 2:e1501678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashinskaya V, Kulakova O, Boyko A, Favorov A, Favorova O (2015) A review of genome-wide association studies for multiple sclerosis: classical and hypothesis-driven approaches. Hum Genet 134:1143–1162

    Article  CAS  PubMed  Google Scholar 

  • Beinke S (2004) Functions of NF-κB1 and NF-κB2 in immune cell biology. Biochem J 382:393–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berenson JR, Ma HM, Vescio R (2001) The role of nuclear factor-κB in the biology and treatment of multiple myeloma. In: Seminars in oncology, vol 6. Elsevier, p 626–633

  • Bonasio R, Lecona E, Reinberg D (2010) MBT domain proteins in development and disease. Sem Cell Dev Biol 21:221–230. https://doi.org/10.1016/j.semcdb.2009.09.010

    Article  CAS  Google Scholar 

  • Bossone SA, Asselin C, Patel AJ, Marcu KB (1992) MAZ, a zinc finger protein, binds to c-MYC and C2 gene sequences regulating transcriptional initiation and termination. Proc Natl Acad Sci USA 89:7452–7456

    Article  CAS  PubMed  Google Scholar 

  • Compston A, Coles A (2008) Multiple sclerosis. Lancet (Lond, Engl) 372:1502–1517. https://doi.org/10.1016/s0140-6736(08)61620-7

    Article  CAS  Google Scholar 

  • Dyment DA, Ebers GC, Sadovnick AD (2004) Genetics of multiple sclerosis. Lancet Neurol 3:104–110

    Article  CAS  PubMed  Google Scholar 

  • Dyment D, Yee I, Ebers G, Sadovnick A (2006) Multiple sclerosis in stepsiblings: recurrence risk and ascertainment. J Neurol Neurosurg Psychiatry 77:258–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frade JM, Rodríguez-Tébar A, Barde Y-A (1996) Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383:166–168

    Article  CAS  PubMed  Google Scholar 

  • Giacalone G et al (2015) Analysis of genes, pathways and networks involved in disease severity and age at onset in primary-progressive multiple sclerosis. Multiple Scler J 21:1431–1442

    Article  CAS  Google Scholar 

  • Gibson G (2010) Hints of hidden heritability in GWAS. Nat Genet 42:558–560

    Article  CAS  PubMed  Google Scholar 

  • Girgis S, Suh JR, Jolivet J, Stover PJ (1997) 5-Formyltetrahydrofolate regulates homocysteine remethylation in human neuroblastoma. J Biol Chem 272:4729–4734

    Article  CAS  PubMed  Google Scholar 

  • Guerrini L, Blasi F, Denis-Donini S (1995) Synaptic activation of NF-kappa B by glutamate in cerebellar granule neurons in vitro. Proc Natl Acad Sci USA 92:9077–9081

    Article  CAS  PubMed  Google Scholar 

  • Guintivano J, Kaminsky ZA (2016) Role of epigenetic factors in the development of mental illness throughout life. Neurosci Res 102:56–66

    Article  CAS  PubMed  Google Scholar 

  • Heil SG, Van der Put NM, Waas ET, den Heijer M, Trijbels FJ, Blom HJ (2001) Is mutated serine hydroxymethyltransferase (SHMT) involved in the etiology of neural tube defects? Mol Genet Metab 73:164–172

    Article  CAS  PubMed  Google Scholar 

  • Hemminki K, Li X, Sundquist J, Hillert J, Sundquist K (2009) Risk for multiple sclerosis in relatives and spouses of patients diagnosed with autoimmune and related conditions. Neurogenetics 10:5–11

    Article  PubMed  Google Scholar 

  • Hoesel B, Schmid JA (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol cancer 12:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollenbach JA, Oksenberg JR (2015) The immunogenetics of multiple sclerosis: a comprehensive review. J Autoimmun 64:13–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh JL, Casaccia P (2013) Epigenetic mechanisms in multiple sclerosis: implications for pathogenesis and treatment. Lancet Neurol 12:195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh JL et al (2014) Epigenome-wide differences in pathology-free regions of multiple sclerosis-affected brains. Nat Neurosci 17:121–130

    Article  CAS  PubMed  Google Scholar 

  • Kaltschmidt C, Kaltschmidt B, Baeuerle PA (1993) Brain synapses contain inducible forms of the transcription factor NF-kappa B. Mech Dev 43:135–147

    Article  CAS  PubMed  Google Scholar 

  • Küçükali Cİ, Kürtüncü M, Çoban A, Çebi M, Tüzün E (2015) Epigenetics of multiple sclerosis: an updated review. NeuroMol Med 17:83–96

    Article  CAS  Google Scholar 

  • Kurata S-I, Wakabayashi T, Ito Y, Miwa N, Ueno R, Marunouchi T, Kurata N (1993) Human neuroblastoma cells produce the NF-kB-like HIV-1 transcription activator during differentiation. FEBS Lett 321:201–204

    Article  CAS  PubMed  Google Scholar 

  • Lango Allen H et al (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467:832–838. https://doi.org/10.1038/nature09410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassmann H (2014) Multiple sclerosis: lessons from molecular neuropathology. Exp Neurol 262:2–7

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2002) Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene 21:148

    Article  Google Scholar 

  • Loughran SJ et al (2008) The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells. Nat Immunol 9:810–819

    Article  CAS  PubMed  Google Scholar 

  • Meberg PJ, Kinney WR, Valcourt EG, Routtenberg A (1996) Gene expression of the transcription factor NF-kappa B in hippocampus: regulation by synaptic activity. Brain Res Mol Brain Res 38:179–190

    Article  CAS  PubMed  Google Scholar 

  • Meier K et al (2012) LINT, a novel dL (3) mbt-containing complex, represses malignant brain tumour signature genes. PLoS Genet 8:e1002676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meldrum C, Doyle MA, Tothill RW (2011) Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev 32:177

    PubMed  PubMed Central  Google Scholar 

  • Miterski B, Böhringer S, Klein W, Sindern E, Haupts M, Schimrigk S (2002) Inhibitors in the NF [kappa] B cascade comprise prime candidate genes predisposing to multiple sclerosis, especially in selected combinations genes and immunity. Epplen J 3:211

    CAS  Google Scholar 

  • Mycko MP, Papoian R, Boschert U, Raine CS, Selmaj KW (2003) cDNA microarray analysis in multiple sclerosis lesions: detection of genes associated with disease activity. Brain 126:1048–1057

    Article  PubMed  Google Scholar 

  • Naushad SM, Pavani A, Digumarti RR, Gottumukkala SR, Kutala VK (2011) Epistatic interactions between loci of one-carbon metabolism modulate susceptibility to breast cancer. Mol Biol Rep 38:4893–4901

    Article  CAS  PubMed  Google Scholar 

  • Okamoto S-I, Sherman K, Bai G, Lipton SA (2002) Effect of the ubiquitous transcription factors, SP1 and MAZ, on NMDA receptor subunit type 1 (NR1) expression during neuronal differentiation. Mol Brain Res 107:89–96

    Article  CAS  PubMed  Google Scholar 

  • Parks CL, Shenk T (1996) The serotonin 1a receptor gene contains a TATA-less promoter that responds to MAZ and Sp1. J Biol Chem 271:4417–4430

    Article  CAS  PubMed  Google Scholar 

  • Ramsay RG, Gonda TJ (2008) MYB function in normal and cancer cells. Nat Rev Cancer 8:523

    Article  CAS  Google Scholar 

  • Ray A, Ray BK (1996) A novel cis-acting element is essential for cytokine-mediated transcriptional induction of the serum amyloid A gene in nonhepatic cells. Mol Cell Biol 16:1584–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray BK, Ray A (1997) Involvement of an SAF-like transcription factor in the activation of serum amyloid A gene in monocyte/macrophage cells by lipopolysaccharide. Biochemistry 36:4662–4668

    Article  CAS  PubMed  Google Scholar 

  • Ray A, Fields AP, Ray BK (2000) Activation of transcription factor SAF involves its phosphorylation by protein kinase C. J Biol Chem 275:39727–39733

    Article  CAS  PubMed  Google Scholar 

  • Ray A, Shakya A, Kumar D, Ray BK (2004) Overexpression of serum amyloid A-activating factor 1 inhibits cell proliferation by the induction of cyclin-dependent protein kinase inhibitor p21WAF-1/Cip-1/Sdi-1 expression. J Immunol 172:5006–5015

    Article  CAS  PubMed  Google Scholar 

  • Ray A, Shakya A, Ray BK (2005) Inflammation-responsive transcription factors SAF-1 and c-Jun/c-Fos promote canine MMP-1 gene expression. Biochim et Biophys Acta (BBA)-Gene Struct Expr 1732:53–61

    Article  CAS  Google Scholar 

  • Ray BK, Shakya A, Ray A (2007) Vascular endothelial growth factor expression in arthritic joint is regulated by SAF-1 transcription factor. J Immunol 178:1774–1782

    Article  CAS  PubMed  Google Scholar 

  • Rossi S et al (2013) Opposite roles of NMDA receptors in relapsing and primary progressive multiple sclerosis. PLoS ONE 8:e67357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu H et al (2006) ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease. Proc Natl Acad Sci USA 103:19176–19181

    Article  CAS  PubMed  Google Scholar 

  • Satoh J-I et al (2005) Microarray analysis identifies an aberrant expression of apoptosis and DNA damage-regulatory genes in multiple sclerosis. Neurobiol Dis 18:537–550

    Article  CAS  PubMed  Google Scholar 

  • Sawcer S et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawcer S, Franklin RJ, Ban M (2014) Multiple sclerosis genetics. Lancet Neurol 13:700–709

    Article  CAS  PubMed  Google Scholar 

  • Schirch L, Peterson D (1980) Purification and properties of mitochondrial serine hydroxymethyltransferase. J Bioll Chem 255:7801–7806

    CAS  Google Scholar 

  • Schmidt et al (2007) Schmidt H, Williamson D, Ashley-Koch A (2007) HLA-DR15 haplotype and multiple sclerosis: a HuGE review. Am J Epidemiol 165:1097–1109

    Article  PubMed  Google Scholar 

  • Sheppard AM, McQuillan JJ, Iademarco MF, Dean DC (1995) Control of vascular cell adhesion molecule-1 gene promoter activity during neural differentiation. J Biol Chem 270:3710–3719

    Article  CAS  PubMed  Google Scholar 

  • Simons M, Misgeld T, Kerschensteiner M (2014) A unified cell biological perspective on axon–myelin injury. J Cell Biol 206:335–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang M et al (2013) The malignant brain tumor (MBT) domain protein SFMBT1 is an integral histone reader subunit of the LSD1 demethylase complex for chromatin association and epithelial-to-mesenchymal transition. J Biol Chem 288:27680–27691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong L, Perez‐Polo J (1996) Effect of nerve growth factor on AP‐1, NF‐κB, and Oct DNA binding activity in apoptotic PC12 cells: extrinsic and intrinsic elements. J Neurosci Res 45:1–12

    Article  CAS  PubMed  Google Scholar 

  • Van Baarsen L et al (2006) A subtype of multiple sclerosis defined by an activated immune defense program. Genes Immun 7:522

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2006) Correlations between serine hydroxymethyltransferase1 C1420T polymorphisms and susceptibilities to esophageal squamous cell carcinoma and gastric cardiac adenocarcinoma Ai zheng= Aizheng=. Chin J Cancer 25:281–286

    CAS  Google Scholar 

  • Woeller CF, Anderson DD, Szebenyi DM, Stover PJ (2007) Evidence for small ubiquitin-like modifier-dependent nuclear import of the thymidylate biosynthesis pathway. J Biol Chem 282:17623–17631

    Article  CAS  PubMed  Google Scholar 

  • Zhang J et al (2013) SFMBT1 functions with LSD1 to regulate expression of canonical histone genes and chromatin-related factors. Genes Dev 27:749–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Ness SA (2011) Myb proteins: angels and demons in normal and transformed cells. Front Biosci J Virtual Libr 16:1109

    Article  CAS  Google Scholar 

  • Zhu Y, He Z-Y, Liu H-N (2011) Meta-analysis of the relationship between homocysteine, vitamin B 12, folate, and multiple sclerosis. J Clin Neurosci 18:933–938

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to thank the patient and healthy controls for providing us with the complementary information. This research has received a grant neither from any funding agency in the public, nor from the commercial/profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rasoul Abdollahzadeh or Asaad Azarnezhad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari Mehrabani, S.Z., Shushizadeh, M.H., Abazari, M.F. et al. Association of SHMT1, MAZ, ERG, and L3MBTL3 Gene Polymorphisms with Susceptibility to Multiple Sclerosis. Biochem Genet 57, 355–370 (2019). https://doi.org/10.1007/s10528-018-9894-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-018-9894-1

Keywords

Navigation