Skip to main content

Advertisement

Log in

SIRT6, a protein with many faces

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Sirtuins are NAD+ dependent deacylases enzymes. There are seven mammalian sirtuins, SIRT1–SIRT7, which are localized to different cellular compartments and are capable of diverse catalytic activities. SIRT6 is a key regulator of healthy ageing. In the past decade our understanding of SIRT6 significantly increased in many different aspects. We know its cellular localization, catalytic activities, substrates and the pathways it is involved in. This review discusses the recent discoveries regarding the SIRT6 enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adler AS, Sinha S, Kawahara TL, Zhang JY, Segal E, Chang HY (2007) Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes Dev 21(24):3244–3257. doi:10.1101/gad.1588507

    Article  PubMed  CAS  Google Scholar 

  • Adler AS, Kawahara TL, Segal E, Chang HY (2008) Reversal of aging by NFkappaB blockade. Cell Cycle 7(5):556–559

    Article  PubMed  CAS  Google Scholar 

  • Ahel D, Horejsí Z, Wiechens N, Polo SE, Garcia-Wilson E, Ahel I, Flynn H, Skehel M, West SC, Jackson SP, Owen-Hughes T, Boulton SJ (2009) Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science 325(5945):1240–1243. doi:10.1126/science.1177321

    Article  PubMed  CAS  Google Scholar 

  • Aragonés J, Fraisl P, Baes M, Carmeliet P (2009) Oxygen sensors at the crossroad of metabolism. Cell Metab 9(1):11–22. doi:10.1016/j.cmet.2008.10.001

    Article  PubMed  Google Scholar 

  • Ardestani PM, Liang F (2012) Sub-cellular localization, expression and functions of Sirt6 during the cell cycle in HeLa cells. Nucleus 3(5):442–451. doi:10.4161/nucl.21134

    Article  PubMed  Google Scholar 

  • Baar K, Song Z, Semenkovich CF, Jones TE, Han DH, Nolte LA, Ojuka EO, Chen M, Holloszy JO (2003) Skeletal muscle overexpression of nuclear respiratory factor 1 increases glucose transport capacity. FASEB J 17(12):1666–1673. doi:10.1096/fj.03-0049com

    Article  PubMed  CAS  Google Scholar 

  • Beneke S (2012) Regulation of chromatin structure by poly(ADP-ribosyl)ation. Front Genet 3:169. doi:10.3389/fgene.2012.00169

    Article  PubMed  CAS  Google Scholar 

  • Biswas M, Chan JY (2010) Role of Nrf1 in antioxidant response element-mediated gene expression and beyond. Toxicol Appl Pharmacol 244(1):16–20. doi:10.1016/j.taap.2009.07.034

    Article  PubMed  CAS  Google Scholar 

  • Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA (2002) Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 277(47):45099–45107. doi:10.1074/jbc.M205670200

    Article  PubMed  CAS  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95. doi:10.1038/nrc2981

    Article  PubMed  CAS  Google Scholar 

  • Carafa V, Nebbioso A, Altucci L (2013) Sirtuins and Disease: The Road Ahead. Frontiers in Pharmacology 3. doi:10.3389/fphar.2012.00004

  • Cardus A, Uryga AK, Walters G, Erusalimsky JD (2013) SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. Cardiovasc Res. doi:10.1093/cvr/cvs352

    PubMed  Google Scholar 

  • Chakrabarty SP, Balaram H (2010) Reversible binding of zinc in Plasmodium falciparum Sir2: structure and activity of the apoenzyme. Biochim Biophys Acta 1804(9):1743–1750. doi:10.1016/j.bbapap.2010.06.010

    Article  PubMed  CAS  Google Scholar 

  • Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5(8):e201. doi:10.1371/journal.pbio.0050201

    Article  PubMed  Google Scholar 

  • Chen D, Thomas EL, Kapahi P (2009) HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genet 5(5):e1000486. doi:10.1371/journal.pgen.1000486

    Article  PubMed  Google Scholar 

  • Das M, Garlick DS, Greiner DL, Davis RJ (2011) The role of JNK in the development of hepatocellular carcinoma. Genes Dev 25(6):634–645. doi:10.1101/gad.1989311

    Article  PubMed  CAS  Google Scholar 

  • Dávalos A, Goedeke L, Smibert P, Ramírez CM, Warrier NP, Andreo U, Cirera-Salinas D, Rayner K, Suresh U, Pastor-Pareja JC, Esplugues E, Fisher EA, Penalva LO, Moore KJ, Suárez Y, Lai EC, Fernández-Hernando C (2011) miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA 108(22):9232–9237. doi:10.1073/pnas.1102281108

    Article  PubMed  Google Scholar 

  • Dephoure N, Zhou C, Villén J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 105(31):10762–10767. doi:10.1073/pnas.0805139105

    Article  PubMed  CAS  Google Scholar 

  • Dominy JE, Lee Y, Jedrychowski MP, Chim H, Jurczak MJ, Camporez JP, Ruan HB, Feldman J, Pierce K, Mostoslavsky R, Denu JM, Clish CB, Yang X, Shulman GI, Gygi SP, Puigserver P (2012) The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol Cell 48(6):900–913. doi:10.1016/j.molcel.2012.09.030

    Article  PubMed  CAS  Google Scholar 

  • Eferl R, Ricci R, Kenner L, Zenz R, David JP, Rath M, Wagner EF (2003) Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell 112(2):181–192

    Article  PubMed  CAS  Google Scholar 

  • Elhanati S, Kanfi Y, Varvak A, Roichman A, Carmel-Gross I, Barth S, Gibor G, Cohen HY (2013) Multiple regulatory layers of SREBP1/2 by SIRT6. Cell Rep 4(5):905–912. doi:10.1016/j.celrep.2013.08.006

    Article  PubMed  CAS  Google Scholar 

  • El-Khamisy SF, Masutani M, Suzuki H, Caldecott KW (2003) A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res 31(19):5526–5533

    Article  PubMed  CAS  Google Scholar 

  • Ferber EC, Peck B, Delpuech O, Bell GP, East P, Schulze A (2012) FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ 19(6):968–979. doi:10.1038/cdd.2011.179

    Article  PubMed  CAS  Google Scholar 

  • Flachsbart F, Caliebe A, Kleindorp R, Blanché H, von Eller-Eberstein H, Nikolaus S, Schreiber S, Nebel A (2009) Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci USA 106(8):2700–2705. doi:10.1073/pnas.0809594106

    Article  PubMed  CAS  Google Scholar 

  • Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273(2):793–798. doi:10.1006/bbrc.2000.3000

    Article  PubMed  CAS  Google Scholar 

  • Gil R, Barth S, Kanfi Y, Cohen HY (2013) SIRT6 exhibits nucleosome-dependent deacetylase activity. Nucleic Acids Res. doi:10.1093/nar/gkt642

    Google Scholar 

  • Greiss S, Gartner A (2009) Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Mol Cells 28(5):407–415. doi:10.1007/s10059-009-0169-x

    Article  PubMed  CAS  Google Scholar 

  • Hassa PO, Haenni SS, Elser M, Hottiger MO (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70(3):789–829. doi:10.1128/MMBR.00040-05

    Article  PubMed  CAS  Google Scholar 

  • Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18(18):2195–2224. doi:10.1101/gad.1228704

    Article  PubMed  CAS  Google Scholar 

  • Huertas P (2010) DNA resection in eukaryotes: deciding how to fix the break. Nat Struct Mol Biol 17(1):11–16. doi:10.1038/nsmb.1710

    Article  PubMed  CAS  Google Scholar 

  • Hui L, Bakiri L, Mairhorfer A, Schweifer N, Haslinger C, Kenner L, Komnenovic V, Scheuch H, Beug H, Wagner EF (2007) p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat Genet 39(6):741–749. doi:10.1038/ng2033

    Article  PubMed  CAS  Google Scholar 

  • Hui L, Zatloukal K, Scheuch H, Stepniak E, Wagner EF (2008) Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21 downregulation. J Clin Invest 118(12):3943–3953. doi:10.1172/JCI37156

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Khan S, Wang Y, Charron G, He B, Sebastian C, Du J, Kim R, Ge E, Mostoslavsky R, Hang HC, Hao Q, Lin H (2013) SIRT6 regulates TNF-[agr] secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496:110–113. doi:10.1038/nature12038

    Article  PubMed  CAS  Google Scholar 

  • Kaidi A, Weinert BT, Choudhary C, Jackson SP (2010) Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329(5997):1348–1353. doi:329/5997/1348

    Article  PubMed  CAS  Google Scholar 

  • Kanfi Y, Shalman R, Peshti V, Pilosof SN, Gozlan YM, Pearson KJ, Lerrer B, Moazed D, Marine JC, de Cabo R, Cohen HY (2008) Regulation of SIRT6 protein levels by nutrient availability. FEBS Lett 582(5):543–548. doi:10.1016/j.febslet.2008.01.019

    Article  PubMed  CAS  Google Scholar 

  • Kanfi Y, Peshti V, Gil R, Naiman S, Nahum L, Levin E, Kronfeld-Schor N, Cohen HY (2010) SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell 9(2):162–173. doi:10.1111/j.1474-9726.2009.00544.x

    Article  PubMed  CAS  Google Scholar 

  • Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483(7388):218–221. doi:10.1038/nature10815

    Article  PubMed  CAS  Google Scholar 

  • Karmakar P, Piotrowski J, Brosh RM, Sommers JA, Miller SP, Cheng WH, Snowden CM, Ramsden DA, Bohr VA (2002) Werner protein is a target of DNA-dependent protein kinase in vivo and in vitro, and its catalytic activities are regulated by phosphorylation. J Biol Chem 277(21):18291–18302. doi:10.1074/jbc.M111523200

    Article  PubMed  CAS  Google Scholar 

  • Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M, McCord RA, Ongaigui KC, Boxer LD, Chang HY, Chua KF (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136(1):62–74. doi:10.1016/j.cell.2008.10.052

    Article  PubMed  CAS  Google Scholar 

  • Kawahara TL, Rapicavoli NA, Wu AR, Qu K, Quake SR, Chang HY (2011) Dynamic chromatin localization of Sirt6 shapes stress- and aging-related transcriptional networks. PLoS Genet 7(6):e1002153. doi:10.1371/journal.pgen.1002153

    Article  PubMed  CAS  Google Scholar 

  • Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18(4):357–368. doi:10.1101/gad.1177604

    Article  PubMed  CAS  Google Scholar 

  • Khongkow M, Olmos Y, Gong C, Gomes AR, Monteiro LJ, Yagüe E, Cavaco TB, Khongkow P, Man EP, Laohasinnarong S, Koo CY, Harada-Shoji N, Tsang JW, Coombes RC, Schwer B, Khoo US, Lam EW (2013) SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer. Carcinogenesis 34(7):1476–1486. doi:10.1093/carcin/bgt098

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Xiao C, Wang RH, Lahusen T, Xu X, Vassilopoulos A, Vazquez-Ortiz G, Jeong WI, Park O, Ki SH, Gao B, Deng CX (2010) Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab 12(3):224–236. doi:10.1016/j.cmet.2010.06.009

    Article  PubMed  CAS  Google Scholar 

  • Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87(2):159–170

    Article  PubMed  CAS  Google Scholar 

  • Lai CC, Lin PM, Lin SF, Hsu CH, Lin HC, Hu ML, Hsu CM, Yang MY (2013) Altered expression of SIRT gene family in head and neck squamous cell carcinoma. Tumour Biol. doi:10.1007/s13277-013-0726-y

    Google Scholar 

  • Lau C, Niere M, Ziegler M (2009) The NMN/NaMN adenylyltransferase (NMNAT) protein family. Front Biosci 14:410–431

    Article  CAS  Google Scholar 

  • Lerrer B, Cohen HY (2013) The guardian: metabolic and tumour-suppressive effects of SIRT6. EMBO J 32(1):7–8. doi:10.1038/emboj.2012.332

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289(5487):2126–2128

    Article  PubMed  CAS  Google Scholar 

  • Liszt G, Ford E, Kurtev M, Guarente L (2005) Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 280(22):21313–21320. doi:10.1074/jbc.M413296200

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Xie QR, Wang B, Shao J, Zhang T, Liu T, Huang G, Xia W (2013) Inhibition of SIRT6 in prostate cancer reduces cell viability and increases sensitivity to chemotherapeutics. Protein Cell. doi:10.1007/s13238-013-3054-5

    Google Scholar 

  • Lum JJ, Bui T, Gruber M, Gordan JD, DeBerardinis RJ, Covello KL, Simon MC, Thompson CB (2007) The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev 21(9):1037–1049. doi:10.1101/gad.1529107

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Stafford LJ, Li D, Luo J, Li X, Ning G, Liu M (2007) GCIP/CCNDBP1, a helix-loop-helix protein, suppresses tumorigenesis. J Cell Biochem 100(6):1376–1386. doi:10.1002/jcb.21140

    Article  PubMed  CAS  Google Scholar 

  • Mahlknecht U, Ho AD, Voelter-Mahlknecht S (2006) Chromosomal organization and fluorescence in situ hybridization of the human Sirtuin 6 gene. Int J Oncol 28(2):447–456

    PubMed  CAS  Google Scholar 

  • Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V (2011) SIRT6 promotes DNA repair under stress by activating PARP1. Science 332(6036):1443–1446. doi:10.1126/science.1202723

    Article  PubMed  CAS  Google Scholar 

  • Mao Z, Tian X, Van Meter M, Ke Z, Gorbunova V, Seluanov A (2012) Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence. Proc Natl Acad Sci USA 109(29):11800–11805. doi:10.1073/pnas.1200583109

    Article  PubMed  CAS  Google Scholar 

  • Marquardt JU, Fischer K, Baus K, Kashyap A, Ma S, Krupp M, Linke M, Teufel A, Zechner U, Strand D, Thorgeirsson SS, Galle PR, Strand S (2013) SIRT6 dependent genetic and epigenetic alterations are associated with poor clinical outcome in HCC patients. Hepatology. doi:10.1002/hep.26413

    Google Scholar 

  • McCay CM, Crowell MF, Maynard LA (1989) The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5(3):155–171 discussion 172

    PubMed  CAS  Google Scholar 

  • McCord RA, Michishita E, Hong T, Berber E, Boxer LD, Kusumoto R, Guan S, Shi X, Gozani O, Burlingame AL, Bohr VA, Chua KF (2009) SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY) 1(1):109–121

    CAS  Google Scholar 

  • Mehta R, Steinkraus KA, Sutphin GL, Ramos FJ, Shamieh LS, Huh A, Davis C, Chandler-Brown D, Kaeberlein M (2009) Proteasomal regulation of the hypoxic response modulates aging in C. elegans. Science 324(5931):1196–1198. doi:10.1126/science.1173507

    Article  PubMed  CAS  Google Scholar 

  • Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16(10):4623–4635. doi:10.1091/mbc.E05-01-0033

    Article  PubMed  CAS  Google Scholar 

  • Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TL, Barrett JC, Chang HY, Bohr VA, Ried T, Gozani O, Chua KF (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452(7186):492–496. doi:10.1038/nature06736

    Article  PubMed  CAS  Google Scholar 

  • Michishita E, McCord RA, Boxer LD, Barber MF, Hong T, Gozani O, Chua KF (2009) Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle 8(16):2664–2666

    Article  PubMed  CAS  Google Scholar 

  • Mimitou EP, Symington LS (2009) DNA end resection: many nucleases make light work. DNA Repair (Amst) 8(9):983–995. doi:10.1016/j.dnarep.2009.04.017

    Article  CAS  Google Scholar 

  • Min J, Landry J, Sternglanz R, Xu RM (2001) Crystal structure of a SIR2 homolog-NAD complex. Cell 105(2):269–279

    Article  PubMed  CAS  Google Scholar 

  • Min L, Ji Y, Bakiri L, Qiu Z, Cen J, Chen X, Chen L, Scheuch H, Zheng H, Qin L, Zatloukal K, Hui L, Wagner EF (2012) Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat Cell Biol 14(11):1203–1211. doi:10.1038/ncb2590

    Article  PubMed  CAS  Google Scholar 

  • Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124(2):315–329. doi:10.1016/j.cell.2005.11.044

    Article  PubMed  CAS  Google Scholar 

  • Naiman S, Cohen HY (2012) The contentious history of sirtuin debates. Rambam Maimonides Med J 3(4):e0022. doi:10.5041/RMMJ.10093

    Article  PubMed  Google Scholar 

  • Naiman S, Kanfi Y, Cohen HY (2012) Sirtuins as regulators of mammalian aging. Aging (Albany NY) 4(8):521–522

    CAS  Google Scholar 

  • Nemoto S, Fergusson MM, Finkel T (2004) Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306(5704):2105–2108. doi:10.1126/science.1101731

    Article  PubMed  CAS  Google Scholar 

  • Pan PW, Feldman JL, Devries MK, Dong A, Edwards AM, Denu JM (2011) Structure and biochemical functions of SIRT6. J Biol Chem 286(16):14575–14587. doi:10.1074/jbc.M111.218990

    Article  PubMed  CAS  Google Scholar 

  • Qi W, Fitchev PS, Cornwell ML, Greenberg J, Cabe M, Weber CR, Roy HK, Crawford SE, Savkovic SD (2013) FOXO3 growth inhibition of colonic cells is dependent on intraepithelial lipid droplet density. J Biol Chem. doi:10.1074/jbc.M113.470617

    Google Scholar 

  • Rongvaux A, Andris F, Van Gool F, Leo O (2003) Reconstructing eukaryotic NAD metabolism. BioEssays 25(7):683–690. doi:10.1002/bies.10297

    Article  PubMed  CAS  Google Scholar 

  • Sanders BD, Jackson B, Marmorstein R (2010) Structural basis for sirtuin function: what we know and what we don’t. Biochim Biophys Acta 1804(8):1604–1616. doi:10.1016/j.bbapap.2009.09.009

    Article  PubMed  CAS  Google Scholar 

  • Sansom OJ, Meniel VS, Muncan V, Phesse TJ, Wilkins JA, Reed KR, Vass JK, Athineos D, Clevers H, Clarke AR (2007) Myc deletion rescues Apc deficiency in the small intestine. Nature 446(7136):676–679. doi:10.1038/nature05674

    Article  PubMed  CAS  Google Scholar 

  • Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J, Baer R, Lukas J, Jackson SP (2007) Human CtIP promotes DNA end resection. Nature 450(7169):509–514. doi:10.1038/nature06337

    Article  PubMed  CAS  Google Scholar 

  • Sauve AA, Schramm VL (2003) Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry 42(31):9249–9256. doi:10.1021/bi034959l

    Article  PubMed  CAS  Google Scholar 

  • Schuetz A, Min J, Antoshenko T, Wang CL, Allali-Hassani A, Dong A, Loppnau P, Vedadi M, Bochkarev A, Sternglanz R, Plotnikov AN (2007) Structural basis of inhibition of the human NAD + -dependent deacetylase SIRT5 by suramin. Structure 15(3):377–389. doi:10.1016/j.str.2007.02.002

    Article  PubMed  CAS  Google Scholar 

  • Schwer B, Schumacher B, Lombard DB, Xiao C, Kurtev MV, Gao J, Schneider JI, Chai H, Bronson RT, Tsai LH, Deng CX, Alt FW (2010) Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. Proc Natl Acad Sci USA 107(50):21790–21794. doi:10.1073/pnas.1016306107

    Article  PubMed  CAS  Google Scholar 

  • Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, Laderoute K, Johnson RS (2001) Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol 21(10):3436–3444. doi:10.1128/MCB.21.10.3436-3444.2001

    Article  PubMed  CAS  Google Scholar 

  • Sebastián C, Zwaans BM, Silberman DM, Gymrek M, Goren A, Zhong L, Ram O, Truelove J, Guimaraes AR, Toiber D, Cosentino C, Greenson JK, Macdonald AI, McGlynn L, Maxwell F, Edwards J, Giacosa S, Guccione E, Weissleder R, Bernstein BE, Regev A, Shiels PG, Lombard DB, Mostoslavsky R (2012) The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151(6):1185–1199. doi:10.1016/j.cell.2012.10.047

    Article  PubMed  Google Scholar 

  • Sundaresan NR, Vasudevan P, Zhong L, Kim G, Samant S, Parekh V, Pillai VB, Ravindra PV, Gupta M, Jeevanandam V, Cunningham JM, Deng CX, Lombard DB, Mostoslavsky R, Gupta MP (2012) The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med 18(11):1643–1650. doi:10.1038/nm.2961

    Article  PubMed  CAS  Google Scholar 

  • Tennen RI, Berber E, Chua KF (2010) Functional dissection of SIRT6: identification of domains that regulate histone deacetylase activity and chromatin localization. Mech Ageing Dev 131(3):185–192. doi:10.1016/j.mad.2010.01.006

    Article  PubMed  CAS  Google Scholar 

  • Tennen RI, Bua DJ, Wright WE, Chua KF (2011) SIRT6 is required for maintenance of telomere position effect in human cells. Nat Commun 2:433. doi:10.1038/ncomms1443

    Article  PubMed  Google Scholar 

  • Toiber D, Erdel F, Bouazoune K, Silberman DM, Zhong L, Mulligan P, Sebastian C, Cosentino C, Martinez-Pastor B, Giacosa S, D’Urso A, Näär AM, Kingston R, Rippe K, Mostoslavsky R (2013) SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol Cell 51(4):454–468. doi:10.1016/j.molcel.2013.06.018

    Article  PubMed  CAS  Google Scholar 

  • Tong L, Denu JM (2010) Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Biochim Biophys Acta 1804(8):1617–1625. doi:10.1016/j.bbapap.2010.02.007

    Article  PubMed  CAS  Google Scholar 

  • Ullsperger M, von Cramon DY (2003) Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J Neurosci 23(10):4308–4314

    PubMed  CAS  Google Scholar 

  • Van Meter M, Mao Z, Gorbunova V, Seluanov A (2011) SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells. Cell Cycle 10(18):3153–3158

    Article  PubMed  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033. doi:10.1126/science.1160809

    Article  PubMed  CAS  Google Scholar 

  • Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K, Masaki KH, Willcox DC, Rodriguez B, Curb JD (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci USA 105(37):13987–13992. doi:10.1073/pnas.0801030105

    Article  PubMed  CAS  Google Scholar 

  • Xiao C, Kim HS, Lahusen T, Wang RH, Xu X, Gavrilova O, Jou W, Gius D, Deng CX (2010) SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J Biol Chem. doi:10.1074/jbc.M110.168039

    Google Scholar 

  • Yang B, Zwaans BM, Eckersdorff M, Lombard DB (2009) The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle 8(16):2662–2663

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Pu M, Zhang Z, Lou Z (2009) Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle 8(11):1747–1753

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Berrocal JG, Frizzell KM, Gamble MJ, DuMond ME, Krishnakumar R, Yang T, Sauve AA, Kraus WL (2009) Enzymes in the NAD + salvage pathway regulate SIRT1 activity at target gene promoters. J Biol Chem 284(30):20408–20417. doi:10.1074/jbc.M109.016469

    Article  PubMed  CAS  Google Scholar 

  • Zhong L, D’Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T, Clish CB, Vaitheesvaran B, Iliopoulos O, Kurland I, Dor Y, Weissleder R, Shirihai OS, Ellisen LW, Espinosa JM, Mostoslavsky R (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140(2):280–293. doi:S0092-8674(09)01627-4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of Cohen’s lab, in particular Shoshana Naiman, for their helpful comments on the manuscript. The research at Cohen’s lab is supported by the Israel Science Foundation, Teva Pharmaceutical Industries LTD, I-Core Foundation, Israeli Ministry of Health, and the ERC: European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim Y. Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gertler, A.A., Cohen, H.Y. SIRT6, a protein with many faces. Biogerontology 14, 629–639 (2013). https://doi.org/10.1007/s10522-013-9478-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-013-9478-8

Keywords

Navigation