Skip to main content

Advertisement

Log in

Safranal ameliorates antioxidant enzymes and suppresses lipid peroxidation and nitric oxide formation in aged male rat liver

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Free radical production and oxidative stress are known to increase in liver during aging, and may contribute to oxidative damage. The objective of this study was to observe the changes in activities of antioxidant enzymes (superoxide dismutase, glutathione-S-transferase, catalase), lipid peroxidation levels and serum nitric oxide occurring in livers of rats of 2, 10 and 20 months old, and to see whether these changes are restored to those of the two month old control levels rats after administration of safranal. The aged rats (10 and 20 months) were given intraperitoneal injections of safranal (0.5 mg/kg day) daily for one month. The results obtained in the present work revealed that normal aging was associated with a significant decrease in the activities of antioxidant enzymes, and an increase in lipid peroxidation in livers and nitric oxide content in serum of aging rats. The results of the present study demonstrate that safranal could be a candidate to suppress the development of age-induced damage by protecting against oxidative stress and increasing antioxidant defenses. A likely mode of action of safranal can be its activity as a hormetin by inducing mild oxidative damage which leads to the activation of antioxidative enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1984) Catalane in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Ali RE, Rattan SIS (2006) Curcumin’s biphasic hormetic response on proteasome activity and heat shock protein synthesis in human keratinocytes. Ann NY Acad Sci 1067:394–399

    Article  PubMed  CAS  Google Scholar 

  • Alonso GL, Salinas MR, Garijo J (1998) Method to determine the authenticity of aroma of saffron (Crocus sativus L.). J Food Prot 61:1525–1528

    PubMed  CAS  Google Scholar 

  • Assimopoulou AN, Sinakos Z, Papageorgiou VP (2005) Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytother Res 19:997–1000

    Article  PubMed  CAS  Google Scholar 

  • Baquer NZ, Taha A, Kumar P (2009) A metabolic and functional overview of brain aging linked to neurological disorders. Biogerontology 10:377–413

    Article  PubMed  CAS  Google Scholar 

  • Basker D, Negbi M (1983) The use of saffron. Econ Bot 37:228–236

    Article  CAS  Google Scholar 

  • Bharti S, Golechha M, Kumari S, Siddiqui KM, Arya DS (2012) Akt/GSK-3β/eNOS phosphorylation arbitrates safranal-induced myocardial protection against ischemia-reperfusion injury in rats. Eur J Nutr 51:719–727

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carrillo MC, Kanai S, Miyasaka K, Kitani K (2002) A protein free diet uncovers the potential age-difference in the hepatic detoxifying system, glutathione S-transferase, in female mice. Mech Ageing Dev 123:1617–1623

    Article  PubMed  CAS  Google Scholar 

  • Castellar MR, Montijano H, Manjón A, Iborra JL (1993) Preparative high-performance liquid chromatographic purification of saffron secondary metabolites. J Chromatogr 648:187–190

    Article  CAS  Google Scholar 

  • Chang VC, Lin YL, Lee MJ, Show SJ, Wang CJ (1996) Inhibitory effect of crocetin on benzo(a)pyrece genotoxicity and neoplastic transformation in C3H1OT1/2 cells. Anticancer Res 765:3603–3608

    Google Scholar 

  • Chen LH, Hu N, Snyder DL (1994) Effects of age and dietary restriction on liver glutathione transferase activities in Lobund–Wistar rats. Arch Gerontol Geriatr 18:191–205

    Article  PubMed  CAS  Google Scholar 

  • Congy F, Bonnefont D, Rousselot DS (1995) Study of oxidative stress in the elderly. Presse Med 24:1115–1118

    PubMed  CAS  Google Scholar 

  • Dufresne C, Cormier F, Dorion S (1997) In vitro formation of crocetin glucosyl esters by Crocus sativus callus extract. Planta Med 63:150–153

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad Biol Med 11:81–128

    Article  PubMed  CAS  Google Scholar 

  • Gagliano N, Grizzi F, Annoni G (2007) Mechanisms of aging and liver functions. Dig Dis 25(2):118–123

    Article  PubMed  Google Scholar 

  • Garcia-Olmo DC (1999) Effects of long-term treatment of colon adenocarcinoma with crocin, a carotenoid from saffron (Crocus sativus): an experimental study in the rat. Nutr Cancer 35:120–126

    Article  PubMed  CAS  Google Scholar 

  • Genet S, Kale RK, Baquer NZ (2002) Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: effect of vanadate and fenugreek (Trigonella foenum graecum). Mol Cell Biochem 236:7–12

    Article  PubMed  CAS  Google Scholar 

  • Geromichalos GD, Lamari FN, Papandreou MA, Trafalis DT, Margarity M, Papageorgiou A, Sinakos Z (2012) Saffron as a source of novel acetylcholinesterase inhibitors: molecular docking and in vitro enzymatic studies. J Agric Food Chem 60:6131–6138

    Article  PubMed  CAS  Google Scholar 

  • Gout B, Bourges C, Paineau-Dubreuil S (2010) Satiereal, a Crocus sativus L extract, reduces snacking and increases satiety in a randomized placebo-controlled study of mildly overweight, healthy women. Nutr Res 30:305–313

    Article  PubMed  CAS  Google Scholar 

  • Halataei BA, Khosravi M, Arbabian S, Sahraei H, Golmanesh L, Zardooz H, Jalili C, Ghoshooni H (2011) Saffron (Crocus sativus) aqueous extract and its constituent crocin reduces stress-induced anorexia in mice. Phytother Res 25:1833–1838

    Article  PubMed  CAS  Google Scholar 

  • Hariri AT, Moallem SA, Mahmoudi M, Memar B, Hosseinzadeh H (2010) Sub-acute effects of diazinon on biochemical indices and specific biomarkers in rats: protective effects of crocin and safranal. Food Chem Toxicol 48:2803–2808

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1981) The ageing process: major risk factor for disease and death. Proc Natl Acad Sci USA 78:7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1992) Free radical theory of aging. Mut Res 275:257–266

    Article  CAS  Google Scholar 

  • Hashimoto M, Shahdat MH, Shimada T (2001) Relationship between age-related increases in rat liver lipid peroxidation and bile canalicular plasma membrane fluidity. Exp Gerontol 37:89–97

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Iguchi A (2010) Possibility of the regression of atherosclerosis through the prevention of endothelial senescence by the regulation of nitric oxide and free radical scavengers. Geriatr Gerontol Int 10:115–130

    PubMed  Google Scholar 

  • Hayes DP (2007) Nutritional hormesis. Eur J Clin Nutr 61:147–159

    Article  PubMed  CAS  Google Scholar 

  • Hortelano S, Dewez B, Genaro AM, Díaz-Guerra MJ, Boscá L (1995) Nitric oxide is released in regenerating liver after partial hepatectomy. Hepatology 21:776–786

    PubMed  CAS  Google Scholar 

  • Hosseinzadeh H, Khosravan V (2002) Anticonvulsant effects of aqueous and ethanolic extracts of Crocus sativus L. stigmas in mice. Arch Iran Med 5:44–47

    Google Scholar 

  • Hosseinzadeh H, Sadeghnia HR (2005) Safranal, a constituent of Crocus sativus (saffron), attenuated cerebral ischemia induced oxidative damage in rat hippocampus. J Pharm Pharm Sci 8:394–399

    PubMed  CAS  Google Scholar 

  • Hosseinzadeh H, Sadeghnia HR (2007) Effect of safranal, a constituent of Crocus sativus (saffron), on methyl methane sulfonate (MMS)-induced DNA damage in mouse organs: an alkaline single-cell gel electrophoresis (comet) assay. DNA Cell Biol 26:841–846

    Article  PubMed  CAS  Google Scholar 

  • Hosseinzadeh H, Modaghegh MH, Saffari Z (2009) Crocus sativus L. (Saffron) extract and its active constituents (crocin and safranal) on ischemia-reperfusion in rat skeletal muscle. Evid Based Complem Alternat Med 6:343–350

    Article  Google Scholar 

  • Kanakis CD, Tarantilis PA, Tajmir-Riahi HA, Polissiou MG (2007) Crocetin, dimethylcrocetin and safranal bind human serum albumin: stability and antioxidative properties. J Agric Food Chem 55:970–977

    Article  PubMed  CAS  Google Scholar 

  • Kitani K (1989) Drugs and the ageing liver. Life Chem Rep 6:143–230

    Google Scholar 

  • Kumar P, Taha A, Sharma D, Kale RK, Baquer NZ (2008) Effect of dehydroepiandrosterone (DHEA) onmonoamine oxidase activity, lipid peroxidation and lipofuscin accumulation in aging rat brain regions. Biogerontology 9:235–246

    Article  PubMed  CAS  Google Scholar 

  • Kurechi T, Kikugawa K, Kato T, Numasato T (1980) Studies on the antioxidants.13. Hydrogen donating capability of antioxidants to 2,2-diphenyl-1-picrylhydrazyl. Chem Pharm Bull 28:2089–2093

    Article  CAS  Google Scholar 

  • Lamming DW, Wood JG, Sinclair DA (2004) Small molecules that regulate lifespan: evidence for xenohormesis. Mol Microbiol 53:1003–1009

    Article  PubMed  CAS  Google Scholar 

  • Linnane AW, Eastwood H (2006) Cellular redox regulation and prooxidant signaling systems. A new persepctive on the free radical theory of aging. Ann NY Acad Sci 1067:47–55

    Article  PubMed  CAS  Google Scholar 

  • Linnane AW, Kios M, Vitetta L (2007) Healthy aging: regulation of the metabolome by cellular redox modulation and prooxidant signaling systems: the essential roles of superoxide anion and hydrogen peroxide. Biogerontology 8:445–467

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Liu IY, Bi X, Thompson RF, Doctrow SR, Malfroy B (2003) Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc Natl Acad Sci USA 100:8526–8531

    Article  PubMed  CAS  Google Scholar 

  • M′armol F, S′anchez J, L′opez D (2010) Role of oxidative stress and adenosine nucleotides in the liver of aging rats. Physiol Res 59:553–560

    Google Scholar 

  • Mantha A, Moorthy K, Cowsik SM, Baquer NZ (2006) Membrane associated functions of neurokinin B (NKB) on Aβ (25–35) induced toxicity in aging rat brain synaptosomes. Biogerontology 7:19–33

    Article  PubMed  CAS  Google Scholar 

  • Marklund S, Marklund G (1979) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  Google Scholar 

  • Mart′ınez-Lara E, Siles E, Hern′andez R (2003) Glutathione S-transferase isoenzymatic response to aging in rat cerebral cortex and cerebellum. Neuro Aging 24:501–509

    Article  Google Scholar 

  • Mattson MP (2008) Dietary factors, hormesis and health. Ageing Res Rev 7:43–48

    Article  PubMed  Google Scholar 

  • Melov S, Ravenscroft J, Malik S, Gill MS, Walker DW, Clayton PE (2000) Extension of life-span with superoxide dismutase/catalase mimetics. Science 289:1567–1569

    Article  PubMed  CAS  Google Scholar 

  • Melov S, Doctrow SR, Schneider JA, Haberson J, Patel M, Coskun PE (2001) Lifespan extension and rescue of spongiform encephalopathy in superoxide dismutase 2 nullizygous mice treated with superoxide dismutase-catalase mimetics. J Neurosci 21:8348–8353

    PubMed  CAS  Google Scholar 

  • Papandreou MA, Tsachaki M, Efthimiopoulos S, Cordopatis P, Lamari FN, Margarity M (2011) Memory enhancing effects of saffron in aged mice are correlated with antioxidant protection. Behav Brain Res 219:197–204

    Article  PubMed  CAS  Google Scholar 

  • Pieper GM, Jordan M, Dondlinger LA, Adams MB, Roza AM (1995) Peroxidative stress in diabetic blood vessels. Reversal by pancreatic islet transplantation. Diabetes 44:884–889

    Article  PubMed  CAS  Google Scholar 

  • Putics A, Végh EM, Csermely P, Soti C (2008) Resveratrol induces the heat-shock response and protects human cells from severe heat stress. Antioxid Red Signal 10:1–11

    Article  Google Scholar 

  • Rattan SIS (2008) Hormesis in aging. Ageing Res Rev 7:63–78

    Article  PubMed  Google Scholar 

  • Rattan SI (2012a) Biogerontology: from here to where? The lord cohen medal lecture-2011. Biogerontology 13:83–91

    Article  PubMed  Google Scholar 

  • Rattan SI (2012b) Rationale and methods of discovering hormetins as drugs for healthy ageing. Expert Opin Drug Discov 7:439–448

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Martinez MA, Ruiz-Torres A (1992) Homeostatis between lipid peroxidation and antioxidant enzyme activities in healthy human aging. Mech Ageing Dev 66:213–222

    Article  PubMed  CAS  Google Scholar 

  • Samarghandian S, Boskabady MH, Davoodi S (2010) Use of in vitro assays to assess the potential antiproliferative and cytotoxic effects of saffron (Crocus sativus L.) in human lung cancer cell line. Phcog Mag 6:309–314

    Article  PubMed  CAS  Google Scholar 

  • Samarghandian S, Tavakkol Afshari J, Davoodi S (2011) Suppression of pulmonary tumor Promotion and induction of apoptosis by Crocus sativus L. Extraction. Appl Biochem Biotechnol 164:238–247

    Article  PubMed  CAS  Google Scholar 

  • Sawada M, Carlson J (1987) Changes in superoxide radical and lipid peroxide formation in the brain, heart and liver during the lifetime of the rat. Mech Ageing Dev 41:125–137

    Article  PubMed  CAS  Google Scholar 

  • Sheng L, Qian Z, Zheng S, Xi L (2006) Mechanism of hypolipidemic effect of crocin in rats: crocin inhibits pancreatic lipase. Eur J Pharmacol 543:116–122

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui MR, Taha A, Moorthy K, Hussain ME, Basir SF, Baquer NZ (2005) Amelioration of altered antioxidant status and membrane linked functions by vanadium and Trigonella in alloxan diabetic rat brains. J Biosci 30:483–490

    Article  PubMed  CAS  Google Scholar 

  • Simpson JA, Narita S, Gieseg S, Gebicki S, Gebicki JM, Dean RT (1992) Long lived reactive species on free radical damaged proteins. Biochem J 282:621–624

    PubMed  CAS  Google Scholar 

  • Singh SP, Janecki AJ, Srivastava SK (2002) Membrane association of glutathione S-transferase mGSTA4-4, an enzyme that metabolizes lipid peroxidation products. J Biol Chem 277:4232–4239

    Article  PubMed  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  • Sudheesh P, Ajith TA, Ramnath V, Janardhanan KK (2010) Therapeutic potential of ganoderma lucidum (Fr.) P. karst against the declined antioxidant status in the mitochondria of post-mitotic tissues of aged mice. Clin Nut 29:406–412

    Article  CAS  Google Scholar 

  • Tew KD, Ronai Z (1999) GST function in drug and stress response. Drug Resist Updat 2:143–147

    Article  PubMed  CAS  Google Scholar 

  • Vanella A, Geremia E, D’Urso G, Silvestro D, Grimaldi R, Pinturo R (1982) Superoxide dismutase activities in aging rat brain. Gerontol 28:108–113

    Article  CAS  Google Scholar 

  • Vendemiale G, Grattagliano I, Altomare E (1999) An update on the role of free radicals and antioxidant defense in human disease. Int J Clin Lab Res 29:49–55

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank research affairs of Mashhad University of Medical Sciences for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariborz Samini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farahmand, S.K., Samini, F., Samini, M. et al. Safranal ameliorates antioxidant enzymes and suppresses lipid peroxidation and nitric oxide formation in aged male rat liver. Biogerontology 14, 63–71 (2013). https://doi.org/10.1007/s10522-012-9409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-012-9409-0

Keywords

Navigation